Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tiền bạn Niên phải gửi là x(đồng)(ĐK: x>0)
Tháng thứ nhất bạn Niên nhận được là \(x\cdot\left(1+0.27\%\right)\left(đồng\right)\)
Số tiền nhận được sau 2 tháng là:
\(\left[x\left(1+0.27\%\right)+x\right]\cdot\left(1+0.27\%\right)\)
\(=x\cdot\left(1+0.27\%\right)^2+x\cdot\left(1+0.27\%\right)\)
Theo đề, ta có:
\(x\cdot\left(1+0.27\%\right)^{12}+x\cdot\left(1+0.27\%\right)^{11}+...+x\cdot\left(1+0.27\%\right)=20000000\)
=>\(x\cdot\left(1+0.27\%\right)\cdot\left[\left(1+0.27\%\right)^{11}+\left(1+0.27\%\right)^{10}+...+1\right]=20000000\)
=>\(x\cdot\left(1+0.27\%\right)\cdot\dfrac{1-\left(1+0.27\%\right)^{11}}{1-\left(1+0.27\%\right)}=20000000\)
=>\(x\simeq1788939\)(đồng)
a) Tổng số tiền vốn và lãi người đó nhận được sau 1 ngày là:
\(T = 5000000.{e^{0,04.\frac{1}{{365}}}} \approx 5000548\) (đồng).
b) Tổng số tiền vốn và lãi người đó nhận được sau 30 ngày là:
\(T = 5000000.{e^{0,04.\frac{{30}}{{365}}}} \approx 5016465\) (đồng).
-Gọi số tiền sinh viên A có được sau n tháng là \(u_n\) (đồng) (\(u_n>0;n\in N\cdot\)).
-Theo đề bài, ta có: \(\left\{{}\begin{matrix}u_1=2.10^6\left(đồng\right)\\u_{n+1}=\left(100\%+0,6\%\right)u_n+10^5=1,006u_n+10^5\left(1\right)\end{matrix}\right.\)
(NHÁP:
-Ta sẽ tạo ra dãy cấp số nhân có liên hệ với (1). Để làm vậy, trước tiên đặt \(v_n=u_n-a\Rightarrow u_n=v_n+a\) (a là hằng số).
Khi đó \(v_{n+1}+a=1,006\left(v_n+a\right)+10^5\)
\(\Rightarrow v_{n+1}=1,006v_n+\left(1,006a-a+10^5\right)\)
Để tạo thành cấp số nhân, \(1,006a-a+10^5=0\), giải ra ta được: \(a=\dfrac{-5.10^7}{3}\))
*Đặt \(v_n=u_n+\dfrac{5.10^7}{3}\Rightarrow u_n=v_n-\dfrac{5.10^7}{3}\). Thế vào (1) ta được:
\(v_{n+1}=1,006v_n\) => \(\left(v_n\right)\) là cấp số nhân với \(q=1,006\)
Ta lại có: \(v_1=u_1+\dfrac{5.10^7}{3}=2.10^6+\dfrac{5.10^7}{3}\)
\(\Rightarrow v_n=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{n-1}\)
\(\Rightarrow u_n=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{n-1}-\dfrac{5.10^7}{3}\)
Vậy sau 12 tháng sinh viên A có:
\(u_{12}=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{11}-\dfrac{5.10^7}{3}=3.269.633,331\left(đồng\right)\)
a) Số tiền chị có trong ngân hàng sau tháng 1 là:
\({P_1} = 100 + 100.0,5\% + 6 = 106,5\) (triệu đồng)
b) Số tiền chị có trong ngân hàng sau 2 tháng là:
\({P_2} = 106,5 + 106,5.0,5\% + 6 = 113,0325\) (triệu đồng)
Số tiền chị có trong ngân hàng sau 3 tháng là:
\({P_1} = 113,0325 + 113,0325.0,5\% + 6 \approx 119,6\) (triệu đồng)
c) Dự đoán công thức của \({P_n}\): \({P_n} = 100.{\left( {1 + 0,5\% } \right)^n}\)
Ngày đầu tiên số tiền thu được là 2000*40=80000(đồng)
Từ ngày thứ hai trở đi thì mỗi ngày sẽ thu được nhiều hơn ngày trước là 500*40=20000(đồng)
Gọi số ngày mà kể từ ngày 1, số tiền quyên góp được đạt 9800000 là x(ngày)(ĐK: x\(\in Z^+\))
Trừ ngày 1 ra thì còn lại là x-1(ngày)
Ngày 1 thu được 80000(đồng)
Ngày 2 thu được 80000+20000(đồng)
Ngày 3 thu được 80000+20000*2(đồng)
...
Ngày x thu được 80000+20000*(x-1)(đồng)
Do đó, ta có: 80000x+(0+20000+20000*2+...+20000*(x-1))>=9800000
=>\(80000x+20000\left(1+2+...+\left(x-1\right)\right)>=9800000\)
=>\(80000x+2000\cdot\dfrac{x\left(x-1\right)}{2}>=9800000\)
=>\(80000x+1000x^2-1000x>=9800000\)
=>\(1000x^2+79000x-9800000>=0\)
=>\(x^2+79x-9800>=0\)
=>\(\left[{}\begin{matrix}x>=\dfrac{-79+9\sqrt{561}}{2}\simeq67,08\\x< =\dfrac{-79-9\sqrt{561}}{2}\left(loại\right)\end{matrix}\right.\)
Vậy: Đến ngày thứ 68 thì số tiền quyên góp được sẽ chạm mốc 9800000 đồng
Đáp án D
Áp dụng công thức 73 = 50(1+r)8 ta được lãi suất một quý là r = 73 50 8 - 1 ≈ 0 , 0484 .
Do đó lãi suất một tháng là r : 3 ≈ 0 , 0161 .
Câu 2:
1: \(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)
=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
2:
Trong mp(SBC), gọi K là giao điểm của SM với BC
=>\(AK\subset\left(SAM\right)\)
Trong mp(ABCD), gọi E là giao điểm của BD và AK
\(E\in BD\subset\left(SBD\right);E\in AK\subset\left(SAM\right)\)
=>\(E\in\left(SAM\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAM\right)\cap\left(SBD\right)\)
nên \(\left(SAM\right)\cap\left(SBD\right)=SE\)
1:
Sau 9 năm bác đó nhận được số tiền là;
\(10\cdot10^6\cdot\left(1+0,8\%\right)^9=10743475,28\left(đồng\right)\)
a: tổng số tiền nhận được sau 1 năm là:
\(T=10000000\left(1+\dfrac{0.05}{2}\right)^2=10506250\left(đồng\right)\)
b: Tổng số tiền nhận được sau 1 năm là:
\(T=100000000\cdot e^{0.05}\simeq\text{10512711}\left(đồng\right)\)
Gọi số ngày anh Hải cần phải tiết kiệm là x
Ngày 1 anh hải tiết kiệm được 5000(đồng)
Ngày 2 anh Hải tiết kiệm được 5000+2000(đồng)
Ngày 3 anh Hải tiết kiệm được 5000+2*2000(đồng)
...
Ngày x anh Hải tiết kiệm được 5000+(x-1)*2000(đồng)
Theo đề, ta có:
\(5000+5000+2000+5000+2\cdot2000+...+5000+\left(x-1\right)\cdot2000>=3840000\)
=>\(x\cdot5000+2000\left(1+2+...+x-1\right)>=3840000\)
=>\(5000x+2000\cdot\dfrac{x\left(x-1\right)}{2}>=3840000\)
=>\(5x+\dfrac{2x\left(x-1\right)}{2}>=3840\)
=>\(5x+x^2-x>=3840\)
=>\(x^2+4x-3840>=0\)
=>(x-60)(x+64)>=0
=>\(\left[{}\begin{matrix}x>=60\\x< =-64\left(loại\right)\end{matrix}\right.\)
Vậy; anh hải cần để dành 60 ngày để đủ số tiền mua đôi giày