K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số ngày anh Hải cần phải tiết kiệm là x

Ngày 1 anh hải tiết kiệm được 5000(đồng)

Ngày 2 anh Hải tiết kiệm được 5000+2000(đồng)

Ngày 3 anh Hải tiết kiệm được 5000+2*2000(đồng)

...

Ngày x anh Hải tiết kiệm được 5000+(x-1)*2000(đồng)

Theo đề, ta có:

\(5000+5000+2000+5000+2\cdot2000+...+5000+\left(x-1\right)\cdot2000>=3840000\)

=>\(x\cdot5000+2000\left(1+2+...+x-1\right)>=3840000\)

=>\(5000x+2000\cdot\dfrac{x\left(x-1\right)}{2}>=3840000\)

=>\(5x+\dfrac{2x\left(x-1\right)}{2}>=3840\)

=>\(5x+x^2-x>=3840\)

=>\(x^2+4x-3840>=0\)

=>(x-60)(x+64)>=0

=>\(\left[{}\begin{matrix}x>=60\\x< =-64\left(loại\right)\end{matrix}\right.\)

Vậy; anh hải cần để dành 60 ngày để đủ số tiền mua đôi giày

21 tháng 10 2023

Gọi số tiền bạn Niên phải gửi là x(đồng)(ĐK: x>0)

Tháng thứ nhất bạn Niên nhận được là \(x\cdot\left(1+0.27\%\right)\left(đồng\right)\)

Số tiền nhận được sau 2 tháng là:

\(\left[x\left(1+0.27\%\right)+x\right]\cdot\left(1+0.27\%\right)\)

\(=x\cdot\left(1+0.27\%\right)^2+x\cdot\left(1+0.27\%\right)\)

Theo đề, ta có:

\(x\cdot\left(1+0.27\%\right)^{12}+x\cdot\left(1+0.27\%\right)^{11}+...+x\cdot\left(1+0.27\%\right)=20000000\)

=>\(x\cdot\left(1+0.27\%\right)\cdot\left[\left(1+0.27\%\right)^{11}+\left(1+0.27\%\right)^{10}+...+1\right]=20000000\)

=>\(x\cdot\left(1+0.27\%\right)\cdot\dfrac{1-\left(1+0.27\%\right)^{11}}{1-\left(1+0.27\%\right)}=20000000\)

=>\(x\simeq1788939\)(đồng)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Tổng số tiền vốn và lãi người đó nhận được sau 1 ngày là:

\(T = 5000000.{e^{0,04.\frac{1}{{365}}}} \approx 5000548\) (đồng).

b) Tổng số tiền vốn và lãi người đó nhận được sau 30 ngày là:

\(T = 5000000.{e^{0,04.\frac{{30}}{{365}}}} \approx 5016465\) (đồng).

31 tháng 12 2023

-Gọi số tiền sinh viên A có được sau n tháng là \(u_n\) (đồng) (\(u_n>0;n\in N\cdot\)).

-Theo đề bài, ta có: \(\left\{{}\begin{matrix}u_1=2.10^6\left(đồng\right)\\u_{n+1}=\left(100\%+0,6\%\right)u_n+10^5=1,006u_n+10^5\left(1\right)\end{matrix}\right.\)

(NHÁP:

-Ta sẽ tạo ra dãy cấp số nhân có liên hệ với (1). Để làm vậy, trước tiên đặt \(v_n=u_n-a\Rightarrow u_n=v_n+a\) (a là hằng số).

Khi đó \(v_{n+1}+a=1,006\left(v_n+a\right)+10^5\)

\(\Rightarrow v_{n+1}=1,006v_n+\left(1,006a-a+10^5\right)\)

Để tạo thành cấp số nhân, \(1,006a-a+10^5=0\), giải ra ta được: \(a=\dfrac{-5.10^7}{3}\))

*Đặt \(v_n=u_n+\dfrac{5.10^7}{3}\Rightarrow u_n=v_n-\dfrac{5.10^7}{3}\). Thế vào (1) ta được:

\(v_{n+1}=1,006v_n\) => \(\left(v_n\right)\) là cấp số nhân với \(q=1,006\)

Ta lại có: \(v_1=u_1+\dfrac{5.10^7}{3}=2.10^6+\dfrac{5.10^7}{3}\)

\(\Rightarrow v_n=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{n-1}\)

\(\Rightarrow u_n=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{n-1}-\dfrac{5.10^7}{3}\)

Vậy sau 12 tháng sinh viên A có:

\(u_{12}=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{11}-\dfrac{5.10^7}{3}=3.269.633,331\left(đồng\right)\)

 

 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Số tiền chị có trong ngân hàng sau tháng 1 là:

\({P_1} = 100 + 100.0,5\%  + 6 = 106,5\) (triệu đồng)

b)    Số tiền chị có trong ngân hàng sau 2 tháng là:

\({P_2} = 106,5 + 106,5.0,5\%  + 6 = 113,0325\) (triệu đồng)

Số tiền chị có trong ngân hàng sau 3 tháng là:

\({P_1} = 113,0325 + 113,0325.0,5\%  + 6 \approx 119,6\) (triệu đồng)

c)    Dự đoán công thức của \({P_n}\): \({P_n} = 100.{\left( {1 + 0,5\% } \right)^n}\)

20 tháng 10 2023

Ngày đầu tiên số tiền thu được là 2000*40=80000(đồng)

Từ ngày thứ hai trở đi thì mỗi ngày sẽ thu được nhiều hơn ngày trước là 500*40=20000(đồng)

Gọi số ngày mà kể từ ngày 1, số tiền quyên góp được đạt 9800000 là x(ngày)(ĐK: x\(\in Z^+\))

Trừ ngày 1 ra thì còn lại là x-1(ngày)

Ngày 1 thu được 80000(đồng)

Ngày 2 thu được 80000+20000(đồng)

Ngày 3 thu được 80000+20000*2(đồng)

...

Ngày x thu được 80000+20000*(x-1)(đồng)

Do đó, ta có: 80000x+(0+20000+20000*2+...+20000*(x-1))>=9800000

=>\(80000x+20000\left(1+2+...+\left(x-1\right)\right)>=9800000\)

=>\(80000x+2000\cdot\dfrac{x\left(x-1\right)}{2}>=9800000\)

=>\(80000x+1000x^2-1000x>=9800000\)

=>\(1000x^2+79000x-9800000>=0\)

=>\(x^2+79x-9800>=0\)

=>\(\left[{}\begin{matrix}x>=\dfrac{-79+9\sqrt{561}}{2}\simeq67,08\\x< =\dfrac{-79-9\sqrt{561}}{2}\left(loại\right)\end{matrix}\right.\)

Vậy: Đến ngày thứ 68 thì số tiền quyên góp được sẽ chạm mốc 9800000 đồng

6 tháng 6 2017

Đáp án D

Áp dụng công thức 73 = 50(1+r)8 ta được lãi suất một quý là  r = 73 50 8 - 1 ≈ 0 , 0484 .

Do đó lãi suất một tháng là  r : 3 ≈ 0 , 0161 .

25 tháng 10 2023

Câu 2:

1: \(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

2:

Trong mp(SBC), gọi K là giao điểm của SM với BC

=>\(AK\subset\left(SAM\right)\)

Trong mp(ABCD), gọi E là giao điểm của BD và AK

\(E\in BD\subset\left(SBD\right);E\in AK\subset\left(SAM\right)\)

=>\(E\in\left(SAM\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAM\right)\cap\left(SBD\right)\)

nên \(\left(SAM\right)\cap\left(SBD\right)=SE\)

1:

Sau 9 năm bác đó nhận được số tiền là;

\(10\cdot10^6\cdot\left(1+0,8\%\right)^9=10743475,28\left(đồng\right)\)

a: tổng số tiền nhận được sau 1 năm là:

\(T=10000000\left(1+\dfrac{0.05}{2}\right)^2=10506250\left(đồng\right)\)

b: Tổng số tiền nhận được sau 1 năm là:

\(T=100000000\cdot e^{0.05}\simeq\text{10512711}\left(đồng\right)\)