Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)
=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)
+ \(x+y+z=2\)
Thay vào Pt (1)
=> \(xy+z\left(2-z\right)=1\)
=> \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)
=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)
Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)
+ \(x+y+z=-2\)
=> \(xy+z\left(-2-z\right)=1\)
=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)
=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)
=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)
TT => \(x,y,z\ge-\frac{4}{3}\)
Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
2/ a/
\(\hept{\begin{cases}x-\sqrt{y+\sqrt{y-\frac{1}{4}}}=\frac{1}{2}\\y-\sqrt{x+\sqrt{x-\frac{1}{4}}}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{\left(\sqrt{y-\frac{1}{4}}+\frac{1}{2}\right)^2}=\frac{1}{2}\\y-\sqrt{\left(\sqrt{x-\frac{1}{4}}+\frac{1}{2}\right)^2}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{y-\frac{1}{4}}-\frac{1}{2}=\frac{1}{2}\\y-\sqrt{x-\frac{1}{4}}-\frac{1}{2}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{y-\frac{1}{4}}=1\\y-\sqrt{x-\frac{1}{4}}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-2x+1=y-\frac{1}{4}\left(1\right)\\y^2-2y+1=x-\frac{1}{4}\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(\Rightarrow\left(x-y\right)\left(x+y-1\right)=0\)
Làm nốt
Mình có nghĩ ra cách này mấy bạn xem giúp mình ạ,
Với \(\hept{\begin{cases}x>y\\xy=1\end{cases}}\) ta có:
\(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\frac{\left(x-y\right)^2}{x-y}+\frac{2.1}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)
Áp dụng BĐT Cô - si cho 2 số \(x-y\)và \(\frac{2}{x-y}\)không âm (vì x>y)
\(P\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
Vậy minP = \(2\sqrt{2}\)<=> Dấu "=" xảy ra
<=> \(x-y=\frac{2}{x-y}\)
<=> \(\left(x-y\right)^2=2\)
<=> \(x-y=\sqrt{2}\)(vì x - y >0)
Kết hợp với xy = 1 ta có:
\(\hept{\begin{cases}x-y=\sqrt{2}\\xy=1\end{cases}}\)<=> \(\hept{\begin{cases}x+\left(-y\right)=\sqrt{2}=S\\x.\left(-y\right)=-1=P\end{cases}}\)
Xét \(S^2-4P=\left(0\sqrt{2}\right)^2-4.\left(-1\right)=2+4=6>0\)
Vậy x và -y là 2 nghiệm của phương trình:
\(x^2-\sqrt{2}x+\left(-1\right)=0\)
=> \(\orbr{\begin{cases}x_1=\frac{\sqrt{2}+\sqrt{6}}{2}\\x_2=\frac{\sqrt{2}-\sqrt{6}}{2}\end{cases}}\)
Vậy: \(x=\frac{\sqrt{2}+\sqrt{6}}{2}\) và \(y=\frac{-\sqrt{2}+\sqrt{6}}{2}\)
hoặc \(x=\frac{\sqrt{2}-\sqrt{6}}{2}\)và \(y=\frac{-\sqrt{2}-\sqrt{6}}{2}\)
\(P=\frac{1}{xy-xyz-z}+\frac{1}{yz-xyz-x}+\frac{1}{xz-xzy-y}\) .Do xyz=-z =>-xyz=1 và x+y+z=0 . Thế vào P ta được \(P=\frac{1}{xy+1+x+y}+\frac{1}{yz+1+y+z}+\frac{1}{xz+1+x+z}\)\(P=\frac{1}{\left(x+1\right)\left(y+1\right)}+\frac{1}{\left(y+1\right)\left(z+1\right)}+\frac{1}{\left(x+1\right)\left(z+1\right)}\) =\(\frac{z+1+x+1+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(P=\frac{3}{xyz+z+xz+yz+xy+1+x+y}\) =\(\frac{3}{xy+yz+xz}\) (Do x+y+z=0; xyz=-1)
x+y+z=0 => (x+y+z)2=0 => x2+y2+z2 +2(xy+yz+xz)=0 => 2(xy+yz+xz)=-6 => xy+yz+xz=-3 Thế vào P ta được :
\(P=\frac{3}{-3}=-1\) . Chúc bạn học tốt
bài 2 là tìm giá trị lớn nhất ạ!
ta có A>=0. xét 100=xy+z+xz\(\ge3\sqrt[3]{xy\cdot yz\cdot zx}\)
\(\Rightarrow100\ge3\sqrt[3]{A^2}\Rightarrow\left(\frac{100}{3}\right)^3\ge A^2\Rightarrow A< \frac{100}{3}\sqrt{\frac{100}{3}}\)
dấu đẳng thức xảy ra khi xy=yz=zx
Bài 1 nhìn vô đoán ngay a=3,b=2 -> S=13!
AM-GM:\(\frac{5}{9}\left(a^2+9\right)\ge\frac{10}{3}a;\text{ }\frac{4}{9}\left(a^2+\frac{9}{4}b^2\right)\ge\frac{4}{3}ab\)
\(\rightarrow a^2+b^2+5\ge\frac{10}{3}a+\frac{4}{3}ab\ge\frac{10}{3}\cdot3+\frac{4}{3}\cdot6=18\)
\(\Rightarrow S=a^2+b^2\ge13\) (đúng)
Đẳng thức xảy ra khi a=3, b=2.