Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy trên cộng dưới ta được
\(x^2+\frac{1}{y^2}+2\frac{x}{y}+x+\frac{1}{y}=6\)
\(\Leftrightarrow\left(x+\frac{1}{y}\right)^2+x+\frac{1}{y}-6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{y}=2\\x+\frac{1}{y}=-3\end{cases}}\)
Giờ chỉ việc thế ngược lại là ra nhé
bài 2 là tìm giá trị lớn nhất ạ!
ta có A>=0. xét 100=xy+z+xz\(\ge3\sqrt[3]{xy\cdot yz\cdot zx}\)
\(\Rightarrow100\ge3\sqrt[3]{A^2}\Rightarrow\left(\frac{100}{3}\right)^3\ge A^2\Rightarrow A< \frac{100}{3}\sqrt{\frac{100}{3}}\)
dấu đẳng thức xảy ra khi xy=yz=zx
Bài 1 nhìn vô đoán ngay a=3,b=2 -> S=13!
AM-GM:\(\frac{5}{9}\left(a^2+9\right)\ge\frac{10}{3}a;\text{ }\frac{4}{9}\left(a^2+\frac{9}{4}b^2\right)\ge\frac{4}{3}ab\)
\(\rightarrow a^2+b^2+5\ge\frac{10}{3}a+\frac{4}{3}ab\ge\frac{10}{3}\cdot3+\frac{4}{3}\cdot6=18\)
\(\Rightarrow S=a^2+b^2\ge13\) (đúng)
Đẳng thức xảy ra khi a=3, b=2.
(x+y+z)²=x²+y²+z²+2(xy+yz+zx)
→ x²+y²+z²=(1/2)²-2.(-2)=17/4
(x+y+z)³=x³+y³+z³+3(x+y)(y+z)(z+x)
=x³+y³+z³+3(x+y+z)(xy+yz+zx)-3xyz
→ x³+y³+z³=(1/2)³+3.(-1/2)-3.1/2.(-2)=13/8
(xy+yz+zx)²=x²y²+y²z²+z²x²+2xyz(x+y+z)
→ x²y²+y²z²+z²x²=(-2)²-2.1/2.(-1/2)=9/2
(x²+y²+z²)(x³+y³+z³)=x^5+y^5+z^5+(x²y²+y²z²+z²x²)(x+y+z)-xyz(xy+yz+zx)
→ x^5+y^5+z^5=17/4.13/8+(-2).(-1/2)-9/2.1/2=181/32
Cộng 1 vào 2 vế của 3 pt ta được:
x+xy+y+1=1+1 <=> (x+1)(y+1)=2
y+yz+z+1=3+1 <=> (y+1)(z+1)=4
z+xz+z+1=7+1 <=> (z+1)(x+1)=8
Ta có: (x+1)(y+1)(y+1)(z+1)=(y+1)2 .8=2.4=8 => (y+1)2 =1
(y+1)(z+1)(z+1)(x+1)=(z+1)2 .2=4.8=32 => (z+1)2 =16
(z+1)(x+1)(x+1)(y+1)=(x+1)2 .4=2.8=16 => (x+1)2 =4
Do x;y;z không âm nên x= 1; y= 0; z= 3
=> M = 1 +02 +32 =10
ta có: N=\(\frac{xy\left(x+y\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{xy\left(x+y\right)}{\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]}=\frac{xy}{\left(x+y\right)^2-3xy}.\) (1) (với x khác y)
ta có: \(x^3-y^3=9\left(x+y\right)\)
<=> \(\left(x-y\right)\left(x^2+xy+y^2\right)=9\left(x+y\right)\)
<=>\(\left(x^2-y^2\right)\left(x^2+xy+y^2\right)=9\left(x+y\right)^2\)
<=>\(3\left(x^2+xy+y^2\right)=9\left(x^2+2xy+y^2\right)\)
<=>\(x^2+xy+y^2=3x^2+6xy+3y^2\)
<=>\(-2\left(x^2+2xy+y^2\right)=xy\)
<=>\(-2\left(x+y\right)^2=xy\) (2)
thay (2) vào (1) ta đc: N=\(\frac{-2\left(x+y\right)^2}{\left(x+y\right)^2-3\left(x+y\right)^2}=\frac{-2\left(x+y\right)^2}{-2\left(x+y\right)^2}=1\)
Vậy N=1
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
Đặt \(a=x+y,b=xy\), hệ trở thành \(\hept{\begin{cases}a+b=-1\\ab=-12\end{cases}}\)
Từ pt đầu ta có \(b=-1-a\)thay vào pt sau : \(a\left(-1-a\right)=-12\Leftrightarrow a^2+a-12=0\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=3\\a=-4\end{cases}}\)
Từ đó suy ra các giá trị của b
Từ a,b tương ứng ta quy về hệ đối xứng loại một và giải.
bn lm đúng r kìa
Mình có nghĩ ra cách này mấy bạn xem giúp mình ạ,
Với \(\hept{\begin{cases}x>y\\xy=1\end{cases}}\) ta có:
\(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\frac{\left(x-y\right)^2}{x-y}+\frac{2.1}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)
Áp dụng BĐT Cô - si cho 2 số \(x-y\)và \(\frac{2}{x-y}\)không âm (vì x>y)
\(P\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
Vậy minP = \(2\sqrt{2}\)<=> Dấu "=" xảy ra
<=> \(x-y=\frac{2}{x-y}\)
<=> \(\left(x-y\right)^2=2\)
<=> \(x-y=\sqrt{2}\)(vì x - y >0)
Kết hợp với xy = 1 ta có:
\(\hept{\begin{cases}x-y=\sqrt{2}\\xy=1\end{cases}}\)<=> \(\hept{\begin{cases}x+\left(-y\right)=\sqrt{2}=S\\x.\left(-y\right)=-1=P\end{cases}}\)
Xét \(S^2-4P=\left(0\sqrt{2}\right)^2-4.\left(-1\right)=2+4=6>0\)
Vậy x và -y là 2 nghiệm của phương trình:
\(x^2-\sqrt{2}x+\left(-1\right)=0\)
=> \(\orbr{\begin{cases}x_1=\frac{\sqrt{2}+\sqrt{6}}{2}\\x_2=\frac{\sqrt{2}-\sqrt{6}}{2}\end{cases}}\)
Vậy: \(x=\frac{\sqrt{2}+\sqrt{6}}{2}\) và \(y=\frac{-\sqrt{2}+\sqrt{6}}{2}\)
hoặc \(x=\frac{\sqrt{2}-\sqrt{6}}{2}\)và \(y=\frac{-\sqrt{2}-\sqrt{6}}{2}\)