Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng HTL:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{4^2}+\dfrac{1}{\left(4\sqrt{2}\right)^2}=\dfrac{3}{32}\Rightarrow AH=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)
Áp dụng đ/lý Pytago:
\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{4^2+\left(4\sqrt{2}\right)^2}=4\sqrt{3}\left(cm\right)\)
Bài 2:
a) \(pt\Leftrightarrow\sqrt{\left(2x+1\right)^2}=3\Leftrightarrow\left|2x+1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3\\2x+1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b) \(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=2\sqrt{x}.\dfrac{\sqrt{x}+1}{\sqrt{x}}=2\sqrt{x}+2\)
Bài 5:
\(\widehat{B}=60^0\)
\(AB=8\sqrt{3}\left(cm\right)\)
\(BC=16\sqrt{3}\left(cm\right)\)
Áp dụng định lý Py - ta - Go vào tam giác ABC vuông tại A có :
AC2 = BC2 - AB2
AC2 =
Ta có :
Mà :
⇒
⇔ AH =
a) Áp dụng pi ta go ta có : AB2 = AH2 + BH2 = 162 + 252 = 881
=> AB =
Lại có : BH.HC = AH2
<=> HC.25 = 162
<=> HC.25 = 256
<=> HC = 256 : 25 = 10,24
Ta có : BC = HC + BH = 10,24 + 25 = 35,24
Áp dụng bi ta go : AC2 = AH2 + HC2 = 162 + 10,242 = 360,8576
=> AC =
Mk làm cho bài bđt nha
Bài 2 :
Có : (x-y)^2 >= 0
<=> x^2-2xy+y^2 >= 0
<=> x^2+y^2 >= 2xy
Tương tự : y^2+z^2 >= 2yz ; z^2+x^2 >= 2zx
=> 2.(x^2+y^2+z^2) >= 2xy+2yz+2zx
<=> x^2+y^2+z^2 >= xy+yz+zx
<=> x^2+y^2+z^2+2xy+2yz+2zx >= 3.(xy+yz+zx)
<=> (x+y+z)^2 >= 3.(xy+yz+zx)
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z
Tk mk nha