K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

Lời giải:

Bài 1:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi H là giao điểm của AB và CD

Nối AC, AD,BC,BD

Xét ΔACD và ΔBCD, ta có:

AC = BC

(bán kính hai cung tròn bằng nhau)

AD = BD

CD cạnh chung

Suy ra: ΔACD= ΔBCD(c.c.c)

Suy ra: ∠C2 =∠C2 (hai góc tương ứng)

Xét hai tam giác AHC và BHC. Ta có:

AC = BC (bán kính hai cung tròn bằng nhau)

∠C2 =∠C2 (chứng minh trên)

CH cạnh chung

Suy ra: ΔAHC= ΔBHC(c.g.c)

Suy ra: AH = BH (hai cạnh tương ứng) (1)

Ta có : ∠H1 =∠H2 (hai góc tương ứng)

∠H1 + ∠H2 =180° (hai góc kề bù)

Suy ra: ∠H1 =∠H2 =90° => CD ⊥ AB (2)

Từ (1) và (2) suy ra CD là đường trung trực của AB

27 tháng 2 2019

bài 2Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ DK ⊥ BH

Ta có: BH ⊥AC(gt)

Suy ra: DK // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song)

=> ∠KDB =C (hai góc đồng vị)

VìΔABC cân tại A nên ∠B =∠C (tính chất tam giác cân)

Suy ra: ∠KDB =B

Xét hai tam giác vuông BFD và DKB, ta có:

∠BFD =∠DKB

BD cạnh huyền chung

∠FBD =∠KDB (chứng minh trên)

Suy ra:ΔBFD=ΔDKB(cạnh huyền góc nhọn)

=> DF = BK (hai cạnh tương ứng)(1)

Nối DH. XétΔDEHvàΔDKH, ta có:

∠DEH =∠DKH =90°

DH cạnh huyền chung

∠EHD =∠KDH (hai góc so le trong)

Suy ra:ΔDEH=ΔDKH( cạnh huyền , góc nhọn)

Suy ra: DE = HK ( hai cạnh tương ứng) (2)

Mặt khác : BH = BK + KH (3)

Từ (1), (2) và (3) suy ra: DF = DE = BH

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh.b) Chỉ ra các cạnh các góc tương...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. 

a) Chỉ ra hai tam giác bằng nhau và chứng minh.

b) Chỉ ra các cạnh các góc tương ứng.

c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC  xác định điểm E sao cho AE = AC. Chứng minh rằng:

a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. 

Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: 

a)  ABM =  DCM. b) AB // DC. c) AM BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh 

a) PM = PN.

b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 900. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB.

a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: 

a) MA = MD b) BA điểm A, M, D thẳng hàng.

Bài 11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh:

a) CP//AB b) MB = CP c) BC = 2MN

Bài 12: Cho ∆ABC gọi M, N lần lượt là trung điểm của AC, AB.  Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh :

a)  ∆AMD = ∆CMB

b)  AE // BC

c)  A là trung điểm của DE

Bài 13: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.

a)  Chứng minh: AB = CD

b)  Chứng minh: BD // AC

c)  Tính số đo góc ABD

Bài 14: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a)  BE = CD

b)  ∆BMD = ∆CNE

c)  AM là tia phân giác của góc BAC

Bài 15: Cho   ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh :   ABM =   ACM

b) Từ M vẽ MH  AB và MK  AC. Chứng minh BH = CK

c) Từ B vẽ BP  AC, BP cắt MH tại I. Chứng minh   IBM cân.

Bài 16: Cho   ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH   AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh : 

a) AB // HK b) AKI cân c) d) AIC =  AKC

Bài 17: Cho   ABC cân tại A ( Â < 90o ), vẽ BD  AC và CE  AB. Gọi H là giao điểm của BD  và CE.

a) Chứng minh:  ABD =  ACE b) Chứng minh   AED cân

c) Chứng minh AH là đường trung trực của ED

d)Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh   

Bài 18: Cho   ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh: 

a) HB = CK b) c)HK // DE        d) AHE =  AKD

Bài 19: Cho  ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:

a)  ADE cân b) ABD =   ACE

Bài 20: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD.

Chứng minh:

a)   BE = CD. b)   BMD =  CME

c) AM là tia phân giác của góc BAC.

Bài 21:  Cho tam giác ABC (AB < AC) có AM là phân giác của góc A (M thuộc BC).Trên AC lấy D sao cho AD = AB.

a) Chứng minh: BM = MD  

b) Gọi K là giao điểm của AB và DM . Chứng minh: DAK = BAC 

c) Chứng minh: AKC cân  

d) So sánh: BM và CM.   

 

 

4
18 tháng 3 2020

đăng gì mà nhiều thế bạn ơi

14 tháng 4 2020

ko làm mà đòi ăn chỉ có ăn đầu bòi ăn cuk

20 tháng 6 2017

Bài 1 :

Xét tam giác ABC và ADE có :

           góc EAD = góc CAB (đối đỉnh)

           CA=EA (gt)

            BA=DA (gt)

suy ra tam giác ABC=ADE (c.g.c)

suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )

        Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM

Xét tam giác ENA và CMA có:

         EN = CM ( cmt)

         góc E = góc C (cmt)

         AE = AC (gt)

suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng ) 

Xét tam giác NDA và MBA có:

            góc D= góc B (cmt)

            ND = MB (cmt )

            DA = BA (cmt )

suy ra tam giác NDA = MBA (c.g.c)suy ra  góc NAD =  góc MAB

   Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )

   Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ

suy ra 3 điểm M,A,N thẳng hàng          (2)

                   Từ (1) và (2 ) suy ra A là trung điểm của MN

( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)

Bài 3: 

Xét ΔHMB vuông tại H và ΔKMC vuông tại K có

MB=MC

\(\widehat{HMB}=\widehat{KMC}\)

Do đo: ΔHMB=ΔKMC

Suy ra: BH=CK

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a)  ABM =  DCM. b) AB // DC. c) AM  BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.

11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN

2
18 tháng 3 2020
làm đc câu nào thì làm
20 tháng 8 2021

tự nghĩ đi

NM
25 tháng 2 2021

ta có B,C đối xứng nhau qua EM nên

BE=CE

mà rõ ràng CE< CD

Nên BE<CD

28 tháng 8 2019

a) Vì hai đường tròn tâm A và B có bán kính bằng nhau nên AM = AN = BM = BN

Xét \(\Delta AMN\)và \(\Delta BMN\)

      AM = BM (cmt)

      AN = BN (cmt)

      MN: cạnh chung 

Suy ra \(\Delta AMN\)\(=\Delta BMN\left(c-c-c\right)\)

b) Gọi O là giao điểm của AB và MN

Dễ chứng minh được: \(\widehat{NAB}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(AN//BM\)

C/m: \(\Delta AON=\Delta BOM\left(g-c-g\right)\)

\(\Rightarrow OA=OB\)(hai cạnh tương ứng)

Sau đó c/m \(AB\perp MN\)suy ra MN là đường trung trực của AB