K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

Bài 1:
\(\left(2x+1\right)^3=9\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)^3-9\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left[\left(2x+1\right)^2-9\right]=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1-3\right)\left(2x+1+3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-2\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\2x-2=0\\2x+4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=1\\x=-2\end{array}\right.\)

Bài 2:

\(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\)

Vì: \(\left(2x-1\right)^2+\left(3-y\right)^2\ge0\)

=> \(\left(2x-1\right)^2+\left(3-y\right)^2+2017\ge2017\)

Dấu "=" xảy ra khi \(x=\frac{1}{2};y=3\)

Vậy GTNN của A là 2017 khi \(x=\frac{1}{2};y=3\)

4 tháng 10 2016

Bài 1:

(2x + 1)3 = 9.(2x + 1)

=> (2x + 1)3 - 9.(2x + 1) = 0

=> (2x + 1).[(2x + 1)2 - 9] = 0

=> (2x + 1).(2x + 1 - 3).(2x + 1 + 3) = 0

=> (2x + 1).(2x - 2).(2x + 4) = 0

\(\Rightarrow\left[\begin{array}{nghiempt}2x+1=0\\2x-2=0\\2x+4=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=-1\\2x=2\\2x=-4\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{-1}{2}\\x=1\\x=-2\end{array}\right.\)

Vậy \(x\in\left\{\frac{-1}{2};1;-2\right\}\)

Bài 2:

Có: \(\left(2x-1\right)^2\ge0;\left(3-y\right)^2\ge0\forall x;y\)

=> \(A=\left(2x-1\right)^2+\left(3-y\right)^2+2017\ge2017\)

Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}\left(2x-1\right)^2=0\\\left(3-y\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\3-y=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=3\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=3\end{cases}\)

Vậy GTNN của A là 2017 khi và chỉ khi \(x=\frac{1}{2};y=3\)

 

10 tháng 7 2017

\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}\left|x^2-3x\right|=0\\\left|\left(x+1\right)\left(x-3\right)\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-3x=0\\\left(x+1\right)\left(x-3\right)=0\end{cases}}\)

Xét \(x^2-3x=0\)

\(\Rightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Xét \(\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Vì xét 2 trị biểu thức , một cái có 2 giá trị (0 or 3) , một cái (-1 or 3)

Nên ta lấy cái chung 

=> x = 3

25 tháng 9 2021

a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)

\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)

b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)

\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

25 tháng 9 2021

\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

17 tháng 7 2016

a.

\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)

TH1:

\(x+\frac{1}{2}=0\)

\(x=-\frac{1}{2}\)

TH2:

\(x-\frac{3}{4}=0\)

\(x=\frac{3}{4}\)

Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)

b.

\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)

TH1:

\(\frac{1}{2}x-3=0\)

\(\frac{1}{2}x=3\)

\(x=3\div\frac{1}{2}\)

\(x=3\times2\)

\(x=6\)

TH2:

\(\frac{2}{3}x+\frac{1}{2}=0\)

\(\frac{2}{3}x=-\frac{1}{2}\)

\(x=-\frac{1}{2}\div\frac{2}{3}\)

\(x=-\frac{1}{2}\times\frac{3}{2}\)

\(x=-\frac{3}{4}\)

Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)

c.

\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)

\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)

\(-\frac{4}{3}x=\frac{13}{3}\)

\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)

\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)

\(x=-\frac{13}{4}\)

d.

\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)

\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)

\(x=5\)

18 tháng 7 2016

a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)

=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)

=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)

=>\(\frac{2}{3}-\frac{4}{3}x=5\)

=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)

=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)

b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)

=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)

=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)

22 tháng 1 2018

a, => (-2)^x = -(2^2)^6.(2^3)^15 

=> (-2)^x = -2^12.2^15 = -2^27 = (-2)^27

=> x = 27

b, Vì |x+5| và (3y-4)^2012 đều >= 0 

=> |x+5|+(3y-4)^2012 >= 0

Dấu "=" xảy ra <=> x+5=0 và 3y-4=0 <=> x=-5 và y=4/3

c, => (2x-1)^2+|2y-x| = 12-5.2^2+8 = 0

Vì (2x-1)^2 và |2y-x| đều >= 0

=> (2x-1)^2+|2y-x| >= 0

Dấu "=" xảy ra <=> 2x-1=0 và 2y-x=0 <=> x=1/2 và y=1/4

Tk mk nha

27 tháng 7 2017

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

27 tháng 7 2017

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)