Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1
1. = (x+1).(3x-1)
2.=(x+1).(x+2).(x+3)
3. = (x-1).(x+1).(x^2+3)
4. = (b+c).(a+b+c)
5. = (a+b+c).(a^2+b^2+c^2-ab-bc-ca)
k mk nha bạn
1) Áp dụng HĐT mở rộng :
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(do a + b + c = 0)
\(\Rightarrow a^3+b^3+c^3=3abc\)
2 )Vì a;b;c là độ dài 3 cạch của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\a+b>c\end{cases}}\)(bđt tam giác)
\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)
3 ) \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x^3+y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x+y\right)\left(x^2-xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4-x^3y+x^2y^2-xy^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\left(x^2+y^2\right)\ge0\)(luôn đúng với mọi \(x;y\ne0andx+y\ge0\))
Vậy \(x^5+y^5\ge x^4y+xy^4\)
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)