Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(mx^2-4x+m-3=0\left(1\right)\)
Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow3< m< 4\)
Ta có:
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\)
+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Mặt khác:
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)
Để A, G, I thẳng hàng
=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
Để B là tập con của A thì
3m-1<3m+3 và 3m+3<m
=>3m+3<m
=>2m<-3
=>m<-3/2
\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)
Giải phương trình sau :
\(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)
\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)
Giải bất phương trình sau :
\(3< n\left(n+1\right)< 31\)
\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)
Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)
\(\Rightarrow A\cap B=\left\{2\right\}\)
Đáp án: B
3 x - 2 ≥ 4 ⇔ 3 x - 2 ≤ - 4 h o ặ c 3 x - 2 ≥ 4 ⇔ x ≤ - 2 3 h o ặ c x ≥ 2 ⇔ A = ( - ∞ ; - 2 3 ] ∪ [ 2 ; + ∞ ) .
A ∩ B = ∅ ⇒ các phần tử thuộc B thì không thuộc A nên B ⊂ ( - 2 3 ; 2 )
⇒ m ≥ - 2 3 m + 2 < 2 ⇔ m ≥ - 2 3 m < 0 ⇒ m ∈ [ - 2 3 ; 0 ) .
Điều kiện tồn tại của A là: 3m-1<3m+7 <=> -1<7 (luôn đúng)
Để A giao B = \(\varnothing\)
\(\Leftrightarrow\orbr{\begin{cases}3m+7\le-1\\3m-1\ge1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m\le\frac{-8}{3}\\m\ge\frac{2}{3}\end{cases}}\)
Vậy \(m\in(-\infty;\frac{-8}{3}]U[\frac{2}{3};+\infty)\)
Bài 2.
Ta có \(A=\left\{x\in R,3x+2\le14\right\}=\left\{x\in R,x\le4\right\}\) = (\(-\infty\);4]
Để \(A\cap B=\varnothing\Leftrightarrow4< 3m+2\Leftrightarrow m>\dfrac{2}{3}\)
Bài 3.
a) TXĐ \(D=R\backslash\left\{-2\right\}\)
b) ĐK: \(12-3x\ge0\Leftrightarrow x\le4\). Vậy TXĐ D=(\(-\infty\);4].
c) ĐK: \(x-4>0\Leftrightarrow x>4\). Vậy TXĐ \(D=\left(4;+\infty\right)\).
d) ĐK: \(\left\{{}\begin{matrix}x-1\ne0\\3-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x< 3\end{matrix}\right.\)
Vậy TXĐ \(D=\left(-\infty;3\right)\backslash\left\{1\right\}\).
e) ĐK: \(\left\{{}\begin{matrix}5-x\ge0\\x^2-3x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le5\\x\ne-2\\x\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 5\\x\ne-2\end{matrix}\right.\)
Vậy TXĐ \(D=\left(-\infty;5\right)\backslash\left\{-2\right\}\).
f) ĐK: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{4}{3}\)
Vậy TXĐ \(D=\left[-\dfrac{1}{2};\dfrac{4}{3}\right]\).
g) ĐK: \(\left\{{}\begin{matrix}2x-5\ge0\\x^2-4x-5\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\ne-1\\x\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\ne5\end{matrix}\right.\)
Vậy TXĐ D=[\(\dfrac{5}{2};+\infty\))\{5}.
h) ĐK: \(\left\{{}\begin{matrix}-x+4\ge0\\x^2-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le4\\x\ne0\\x\ne1\end{matrix}\right.\)
Vậy TXĐ \(D=\)(\(-\infty;4\)]\{0;1}.