Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 4 + 42 + 43 + ... + 417
= 4 + (42 + 43 + 44 + ... + 417)
Đặt B = 42 + 43 + 44 + ... + 417
= (42 + 43 + 44 + 45) + (46 + 47 + 48 + 49) + ... + (414 + 415 + 416 + 417)
= 42 (1 + 4 + 42 + 43) + 46 (1 + 4 + 42 + 43) + ... + 414 (1 + 4 + 42 + 43)
= 42 . 85 + 46 . 85 + ... + 414 . 85
Vì 85 chia hết cho 17 nên 42 . 85 + 46 . 85 + ... + 414 . 85 chia hết cho 17
=> B chia hết cho 17
=> A = 4 + (42 + 43 + ... + 417) chia cho 17 dư 4
Vậy A chia cho 17 dư 4.
B=(4+4^2+4^3)+....+(4^15+4^16+4^17)
=4.(4^0+4^1+4^2)+....+4^15.(4^0+4^1+4^2)
=4.(1+4+16)+....+4^15.(1+4+16)
=4.21+...+4^15.21
21.(4+...+4^15) chia hết cho 17
vậy B chia hết cho 17
k mình nha
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
a) Gọi số cần tìm là a
=> a = BCNN(2;3;4;5;7) + 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 7 = 7
=> a = BCNN(2;3;4;5;7) + 1 = 22.3.5.7 + 1 = 412
Vậy số cần tìm là 421
b) Gọi số cần tìm là a
=> a + 1 chia hết cho 2;3;4;5
=> a = BCNN(2;3;4;5) - 1
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> a = BCNN(2;3;4;5)- 1 = 22.3.5 - 1 = 59
Vậy số cần tìm là 59
\(A=3+3^2+3^3+...+3^{2009}+3^{2010}=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(A=3.13+3^4.13+...+3^{2008}.13\)
\(A=13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13
\(B=\left(4+4^3\right)+\left(4^2+4^4\right)+\left(4^5+4^7\right)+\left(4^6+4^8\right)+...+\left(4^{15}+4^{17}\right)\)
\(B=4.17+4^2.17+4^5.17+...+4^{15}.17\)chia hết cho 17=>số dư = 0
$A = 4 + 4^2 + 4^3 + … + 4^{2024} + 4^{2025}$
$A= 4(1 + 4 + 4^2 + … + 4^{2023} + 4^{2024})$
$A = 4 \times \frac{4^{2025} - 1}{4 - 1} = \frac{4^{2026} - 4}{3}$
$A \equiv \frac{16 - 4}{3} \equiv 4$
=> Vậy, số dư của A khi chia cho 17 là 4.