Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 m à x 1 = 4 ; x 2 = 3 v à y 1 + y 2 = 14
Do đó
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Chọn đáp án D
Vì \(x\) và \(y\) là hai đại tượng tỉ lệ nghịch nên \(xy=a\left(a\ne0\right)\)
Thay các giá trị tương ứng của \(x\) và \(y\) ta được :
\(x_1.y_1=x_2.y_2\)
\(\Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}\)
\(\Rightarrow\dfrac{y_1}{3}=\dfrac{y_2}{4}\)
- Áp dụng t/c dãy tỉ số bằng nhau, ta có :
\(\dfrac{y_1}{3}=\dfrac{y_2}{4}=\dfrac{y_1+y_2}{3+4}=\dfrac{14}{7}=2\)
\(\Rightarrow y_2=2.4=8\)
Với x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 mà x 1 = 4 , x 2 = 3 và y 1 + y 2 = 14
Do đó: 4 y 1 = 3 y 2 ⇒ y 1 3 = y 2 4
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
Với x và y là hai đại lượng tỉ lệ nghịch nên x 1 y 1 = x 2 y 2 mà x 2 = − 4 ; y 1 = − 10 và 3 x 1 - 2 y 2 = 32
Nên ta có:
Chọn B