Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
b: Ta có: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
c: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,F thẳng hàng
a: AM+MC=AC
NA+NB=AB
mà AB=AC; AM=AN
nên MC=NB
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
a) Ta có: \(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
\(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
mà AC=AB(gt)
nên AM=MC=AN=NB
Xét ΔAMB và ΔANC có
AM=AN(cmt)
\(\widehat{BAM}\) chung
AB=AC(gt)
Do đó: ΔAMB=ΔANC(c-g-c)
b) Xét ΔABC có AB=AC(Gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{NBC}=\widehat{MCB}\)
Xét ΔNBC và ΔMCB có
NB=MC(cmt)
\(\widehat{NBC}=\widehat{MCB}\)(cmt)
BC chung
Do đó: ΔNBC=ΔMCB(c-g-c)
BẠN TỰ VẼ HÌNH NHA
ta có AM = MC = 1/2 AC ( M là trung đ AC )
AN = NB = 1/2 AB ( N là trung đ AB )
mà AB = AC ( tg ABC cân tại A)
=> AM = MC = AN = NB
tg ANC và tg AMB có
AB = AC ( gt )
^A chung
AN = AM ( cmt )
=> tg ANC = tg AMB ( c-g-c )
=> NC = BM ( 2 cạnh t/ứ ) ( đpcm )
=> ^ABM = ^ACN ( 2 góc t/ứ) ( đpcm)
b, vì tg ABC cân tại A => ^B =^C
mà ^ABM + ^IBC = ^B
^ ANC + ^ICB = ^C
=> ^ICB = ^IBC => tg IBC cân tại I
chúc bn hok tốt
a: Xét ΔABN và ΔACM có
AB=AC
góc BAN chung
AN=AM
=>ΔABN=ΔACM
b: ΔABN=ΔACM
=>BN=CM
AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
Xét ΔMBC và ΔNCB có
MB=NC
BC chung
MC=NB
=>ΔMBC=ΔNCB
=>góc BMC=góc BNC và góc OBC=góc OCB
Xét ΔOCB có góc OBC=góc OCB
nên ΔOBC cân tại O
=>OB=OC
Hình bạn tự vẽ nhé
Ta có AB = AC
=> \(\Delta\)ABC cân ở A
mà M và N lần lượt là trung điểm của AB và AC
=> AN = AM = CN = BM luôn
Xét \(\Delta NAB\) và \(\Delta MAC\) có:
\(AM=AN\)
\(\widehat{A}\) chung
\(AB=AC\)
=> 2 tam giác này bằng nhau \(\left(c.g.c\right)\)
=> \(BN=CM\) và \(\widehat{BNC}=\widehat{CMB}\)
làm gộp lại nhé bn