Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{BAN}\) chung
AN=AM
Do đó: ΔABN=ΔACM
b: Ta có: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
c: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,F thẳng hàng
hình vẽ đấy nhé
GIAI
a ) xét tam giác AMB và tam giác CMN có
AM = MC ( M là trung điểm của AC )
góc AMB = goc CMN ( đối đỉnh )
MB = MN ( M là trung điểm của BN )
=> tam giác AMB = tam giác CMN ( c.g.c)
=> AB = CN ( 2 cạnh tương ứng )
=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )
=> CN vuông góc với AC (dpcm )
b ) chúng minh tương tự
=> tam giác ANM = tam giác CBM ( c.g.c )
=> AN = BC ( 2 cạnh tương ứng )
=> góc ANM = góc CBM ( 2 góc tương ứng )
mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC
=> AN song song BC ( dpcm)
Hình bạn tự vẽ nhé
Ta có AB = AC
=> \(\Delta\)ABC cân ở A
mà M và N lần lượt là trung điểm của AB và AC
=> AN = AM = CN = BM luôn
Xét \(\Delta NAB\) và \(\Delta MAC\) có:
\(AM=AN\)
\(\widehat{A}\) chung
\(AB=AC\)
=> 2 tam giác này bằng nhau \(\left(c.g.c\right)\)
=> \(BN=CM\) và \(\widehat{BNC}=\widehat{CMB}\)
làm gộp lại nhé bn
a: Xét ΔABN và ΔACM có
AB=AC
góc BAN chung
AN=AM
=>ΔABN=ΔACM
b: ΔABN=ΔACM
=>BN=CM
AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
Xét ΔMBC và ΔNCB có
MB=NC
BC chung
MC=NB
=>ΔMBC=ΔNCB
=>góc BMC=góc BNC và góc OBC=góc OCB
Xét ΔOCB có góc OBC=góc OCB
nên ΔOBC cân tại O
=>OB=OC
a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi
hai tam giác bằng nhau
có gì mà phải help me