K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Nếu đặt u = x 2 − 1 thì x 2  = u + 1 nên phương trình có dạng

( 2  + 2)u = 2(u + 1) −  2  (1)

Ta giải phương trình (1):

(1) ⇔  2 u + 2u = 2u + 2 −  2

⇔  2 u = 2 −  2

⇔  2 u =  2 ( 2  − 1) ⇔ u =  2  − 1

⇔ x 2  − 1 =  2  − 1

⇔ x 2  = 2

⇔ x = 1

20 tháng 5 2017

Đặt Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phương trình đã cho trở thành:

0,05.2u = 3,3 − u ⇔ 0,1u = 3,3 – u ⇔ 1,1u = 3,3 ⇔ u = 3.

Do đó: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ x – 2010 = 0

⇔ x = 2010.

15 tháng 7 2019

Đặt Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ta có phương trình 6u – 8 = 3u + 7.

Giải phương trình này:

6u – 8 = 3u + 7

⇔ 6u – 3u = 7 + 8

⇔ 3u = 15 ⇔ u = 5

Vậy (16x + 3)/7 = 5 ⇔ 16x + 3 = 35

⇔ 16x = 32 ⇔ x = 2

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ (16x + 3)/7 = 5 ⇔ 16x + 3 = 35

⇔ 16x = 32 ⇔ x = 2

18 tháng 5 2017

a/ \(\dfrac{6\left(16x+3\right)}{7}-8=\dfrac{3\left(16x+3\right)}{7}+7\)

\(\Leftrightarrow6\left(16x+3\right)-56=3\left(16x+3\right)+49\)

\(\Leftrightarrow96x+18-56-48x-9-49=0\)

\(\Leftrightarrow48x=96\)

\(\Leftrightarrow x=2\)

Vậy phương trình đã cho có nghiệm x=2

5 tháng 6 2017

a) Đặt u = \(\dfrac{16x+3}{7}\), ta có:

\(\dfrac{6\left(16x+3\right)}{7}\) - 8 = \(\dfrac{3\left(16x+3\right)}{7}\) + 7

<=> 6.u - 8 = 3.u + 7

=> 6.u - 3.u = 8 + 7

=> 3.u = 15

=> u = 15 / 3

=> u = 5

<=> \(\dfrac{16x+3}{7}\) = 5

=> 16x + 3 = 5 . 7

=> 16x = 35 - 3

=> 16x = 32

=> x = 32 / 16

=> x = 2

Vậy S = { 2 }.

a: =>(x^2-2x+1-1)^2+2(x-1)^2=1

=>(x-1)^4-2(x-1)^2+1+2(x-1)^2=1

=>(x-1)^4=0

=>x-1=0

=>x=1

b: =>(x^2+2)^2+3x(x^2+2)+2x^2-20x^2=0

=>(x^2+2)^2+3x(x^2+2)-18x^2=0

=>(x^2+2+6x)(x^2-3x+2)=0

=>\(x\in\left\{-3\pm\sqrt{7};1;2\right\}\)

NV
5 tháng 3 2022

\(\Leftrightarrow4\left|x-2\right|=\left(x-2\right)^2+4\)

Đặt \(\left|x-2\right|=t\ge0\)

\(\Rightarrow4t=t^2+4\Rightarrow t^2-4t+4=0\)

\(\Rightarrow\left(t-2\right)^2=0\Rightarrow t=2\)

\(\Rightarrow\left|x-2\right|=2\Rightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

8 tháng 7 2016

2/ (x+ x + 1) (x2+ x + 2) = 12

đặt x2 + x = t

thay vào đc: 

(t + 1) (t + 2) = 12

<=> t2 + 3t + 2 = 12

<=> t2 + 3t - 10 = 0

<=> t2 - 2t + 5t - 10 = 0

<=> t (t - 2) + 5 (t - 2) = 0

<=> (t + 5) (t - 2) = 0

=> {

t=−5

t=2

thay t đc:

*) x2 + x = -5  => x loại

*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2) 

=> x = 1 hoặc x = - 2

S = {-2 ; 1}

3/ (x- 6x + 4)- 15(x- 6x + 10) = 1

đặt x- 6x + 4 = t

có: t- 15(t + 6) = 1

<=> t2 - 15t - 91 = 0

8 tháng 7 2016

Câu 2 đặt ẩn phụ là x^2+x+2= a là đc

Câu 3 đặt ẩnphụ là x^2-6x+4= b là đc

7 tháng 2 2019

Bài 1 :

Mình nghĩ phải sửa đề ntn :

\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)\right]^2-\left[3\left(x+3\right)\right]^2=0\)

\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{-23}{7}\end{cases}}}\)

Vậy....

b) \(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(q=x^2+x+1\)ta có :

\(A=q\left(q+1\right)-12\)

\(A=q^2+q-12\)

\(A=q^2+4q-3q-12\)

\(A=q\left(q+4\right)-3\left(q+4\right)\)

\(A=\left(q+4\right)\left(q-3\right)\)

Thay \(q=x^2+x+1\)ta có :

\(A=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(A=\left(x^2+x+5\right)\left(x^2+2x-x-2\right)\)

\(A=\left(x^2+x+5\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(A=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

7 tháng 2 2019

Cảm ơn ạ><

8 tháng 7 2016

2/ (x+ x + 1) (x2+ x + 2) = 12

đặt x2 + x = t

thay vào đc: 

(t + 1) (t + 2) = 12

<=> t2 + 3t + 2 = 12

<=> t2 + 3t - 10 = 0

<=> t2 - 2t + 5t - 10 = 0

<=> t (t - 2) + 5 (t - 2) = 0

<=> (t + 5) (t - 2) = 0

=> \(\hept{\begin{cases}t=-5\\t=2\end{cases}}\)

thay t đc:

*) x2 + x = -5  => x loại

*) x2 + x = 2 = x2 + x - 2 = x2 - 1 + x - 1 = (x - 1) (x + 1) + (x - 1) = (x - 1) (x + 2) 

=> x = 1 hoặc x = - 2

S = {-2 ; 1}

3/ (x- 6x + 4)- 15(x- 6x + 10) = 1

đặt x- 6x + 4 = t

có: t- 15(t + 6) = 1

<=> t2 - 15t - 91 = 0

....

....

số xấu, xem lại đề ~0~

7 tháng 7 2016

câu 2, a=x2 +x+1 . PHƯƠNG TRÌNH TRỞ THÀNH a x (a +1)=12. giải binh thương 

câu 3, tương tự a= x2 - 6x + 4 .PHƯƠNG TRÌNH TRỞ THÀNH a2 - 15x(a+6)=1. giải bình thương 

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

Đặt \(y = 2x - 5\).

 \(\begin{array}{l}\left[ {8{x^3}{{\left( {2x - 5} \right)}^2} - 6{x^2}{{\left( {2x - 5} \right)}^3} + 10x{{\left( {2x - 5} \right)}^2}} \right]:2x{\left( {2x - 5} \right)^2}\\ = \left( {8{x^3}.{y^2} - 6{x^2}.{y^3} + 10x.{y^2}} \right):2x{y^2}\\ = 8{x^3}.{y^2}:2x{y^2} - 6{x^2}.{y^3}:2x{y^2} + 10x.{y^2}:2x{y^2}\\ = 4{x^2} - 3xy + 5\\ = 4{x^2} - 3x\left( {2x - 5} \right) + 5\\ = 4{x^2} - 6{x^2} + 15x + 5\\ =  - 2{x^2} + 15x + 5\end{array}\)