K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

cho xin cái hình nhe , mất thước ời

Bài 1: 

a:  Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Bài 2: 

a: Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔABC có 

MN//AC

nên \(\dfrac{MN}{AC}=\dfrac{BM}{AB}\)

hay MN=6(cm)

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

b: Xét ΔACB có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Bài 2: 

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

b: Xét ΔABC có

M là trung điểm của AB

MN//AC

Do đó: N là trung điểm của BC

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: \(MN=\dfrac{AC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )