Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số chính phương liên tiếp đó là n2 ; (n+1)2
ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)
Không đúng: VD: 25;36 : 25+36 +25.36=71+900 =971 không là số chính phương
Gọi hai số chính phương liên tiếp là k2 và (k+1)2
Ta có:
k2 + (k+1)2 + k2(k+1)2
= k2 + k2 + 2k + 1 +k4 + 2k3 + k2
= k4 + 2k3 + 3k2 + 2k + 1
= (k2+k+1)2
= [k(k+1)+1]2 là số chính phương lẻ.
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)
Gọi hai số chính phương liên tiếp là \(k^2\)và \(\left(k+1\right)^2\)
Ta có: \(k^2+\left(k+1\right)^2+k^2\left(k+1\right)^2\)
\(=k^2+k^2+2k+1+k^4+2k^3+k^2\)
\(=k^4+2k^3+3k^2+2k+1=\left(k^2+k+1\right)^2\)
\(=\left[k\left(k+1\right)+1\right]^2\)là số chính phương lẻ
Vậy tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ ( đpcm )
goi 2 so chinh phuong lien tiep do la n2;(n+1)2
k2+(k+1)2 + k2.(k+1)2
=k2+k2+2k+1+k4+2k3+k2
=k4+3k2+2k3+2k+1
=(k2+k+1)2
=[k(k+1)+1]2
ket qua cuoi cung chung minh rang so do la so chinh phuong le.vi du ko dung:
25;36:25+36+25.36=71+900=971 ko la so chinh phuong le