Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Số đường thẳng vẽ được là: \(C^2_{20}\left(đường\right)\)
b: Số đường thẳng vẽ được là:
\(C^2_n\left(đường\right)\)
c: SỐ đường thẳng vẽ được là:
\(1+15\cdot5+C^2_{15}=C^2_{15}+76\left(đường\right)\)
a)Chọn 1 điểm trong số 20 điểm đã cho.Qua điểm đó, với lần lượt từng điểm trong 19 điểm còn lại ta vẽ được 19 đường thẳng.Cứ như vậy với 20 điểm ta vẽ được 20.19 đường thẳng nhưng mỗi đường thẳng đã được tính hai lần, do đó có tất cả (20.19):2=190 (đường thẳng)
b)Cho điểm n trong đó không có bất kì 3 điểm nào thẳng hàng.Cứ qua 2 điểm ta vẽ một đường thẳng, đường thẳng vẽ được là n.(n-1).Nếu qua 3 điểm không thẳng hàng ta vẽ được 3.2:2=3(đường thẳng), số đường thẳng giảm đi là 3-1=2
Vậy trong 20 điểm mà có đúng 3 điểm thẳng hàng thì ta vẽ được 190-2=188(đường thẳng)
NHỚ TÍCH NHÁ
Ta chọn 1 điểm bất kỳ.Qua diểm đó ta nối lần lượt từng điểm trong 19 điểm còn lại ta vẽ được 19 đường thẳng
Làm như vậy ta vẽ được 20x19 đường thẳng nhưng mỗi đường thẳng đã được tính 2 lần do đó có tất cả : (20x19) : 2= 190(đường thẳng)
Cho n điểm trong đó không có bất kì 3 điểm nào thẳng hàng.
Cứ qua 2 điểm vẽ được 1 đường thẳng thì số đường thẳng vẽ được là nx(n-1): 2 lưu ý nx(n-1) là tử số 2 là mẫu số b,
Nếu qua 3 điểm không thẳng hàng ta vẽ được 3x2:2=3 đường thẳng giảm đi số đường thẳng là: 3-1=2
vậy trong 20 điểm mà có 3 điểm thẳng hàng thì ta vẽ được: 190-2=188 đường thẳng
1 điểm với 19 điểm còn lại tạo thành 19 đường thẳng,
mà có 20 điểm nên số đường thẳng được tạo thành là: 19.20= 380 (đường thẳng)
vì mỗi đường thẳng được lặp lại hai lần
Vậy thật ra tất cả số đường thẳng là: 380:2=190 (đường thẳng)
đầu tiên ta có 20 đoạn thẳng,nếu vẽ điểm 1 nối với điểm 3 ta sẽ được thêm 1 doan thẩng và tránh lặp lại
cứ như vậy sau mỗi lượt sẽ trừ đi 1 đoạn thẳng
vậy ta sẽ có số đoạn thẳng là 20+19+18+17+16+15+14+13+12+111+10+9+8+7+6+5+4+3+2+1=211 đoạn thẳng