Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy A > 1
Ta có:
\(A=\frac{1}{1^2}+\frac{1}{2^3}+...+\frac{1}{2018^{2019}}\)
\(< \frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2018^2}< 1+\frac{1}{1\cdot2}+...+\frac{1}{2017\cdot2018}\)
\(=1+1-\frac{1}{2}+...+\frac{1}{2018}=2-\frac{1}{2018}< 2\)
Vì \(1< A< 2\) nên A không nguyên
\(A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=2^{2018}-1hayA=2^{2018}-1\)
2; 3 tuong tu
1) A = 1 + 2 + 22 + 23 + .... + 22018
2A = 2 + 22 + 23 + 24 + ..... + 22019
2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )
Vậy A = 22019 - 1
2) B = 1 + 3 + 32 + 33 + ..... + 32018
3A = 3 + 32 + 33 + ...... + 32019
3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )
2A = 32019 - 1
Vậy A = ( 32019 - 1 ) : 2
3) C = 1 + 4 + 42 + 43 + ...... + 42018
4A = 4 + 42 + 43 + ...... + 42019
4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )
3A = 42019 - 1
Vậy A = ( 42019 - 1 ) : 3
A=1/2+1/3+..+1/2019 < 1>
A= 1+1/2+1/3+..+1/2019 < 1>
A=1+1/2+1/3+..+1/2019 <1>
A=1+1/2+1/3+..+1/2019 <2018>
Vì 2018/2019 <1>
nên A=1/2+1/3+..+1/2019<1>
=> A=1/2+1/3+..+1/2019 không phải là số tự nhiên.
Mình chưa hiểu cách bạn làm với dấu <1> cho lắm.
Theo mình hiểu thì bạn đang chứng minh $A< 1$ nên $A$ không phải số tự nhiên. Mà điều này thì sai vì $A=1+(\frac{1}{2}+\frac{1}{3}+...)$ hiển nhiên lớn hơn $1$.
Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29
2S = 2(1 + 2 + 22 + 23 + ... + 29)
2S = 2 + 22 + 23 + ... + 210
2S - S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)
S = 210 - 1 = 28.4 - 1
Vậy S < 5 x 28
A = 3 + 32 + 33 + 34 + 35+ .... + 32018 + 32019
= 3 + (32 + 33 + 34 + 35+ .... + 32018 + 32019)
= 3 + [(32 + 33) + (34 + 35) + ... + (32018 + 32019)]
= 3 + [(32 + 33) + 32.(32 + 33) + ... + 32016.(32 + 33)]
= 3 + (36 + 32.36 + ... + 32016.36)
= 3 + 36.(1 + 32 + .... + 32016)
= 3 + 4.9.(1 + 32 + .... + 32016)
Vì 4.9.(1 + 32 + .... + 32016) \(⋮\)4
=> 4.9.(1 + 32 + .... + 32016) + 3 : 4 dư 3
=> A : 4 dư 3
Vậy số dư khi A chia 4 là 3
theo bài ra ta có:
A=3^1+3^2+3^3+3^4 .... +3^2018+3^2019
3A=3.(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)
3A=3^2+3^3+3^4 .... +3^2018+3^2020
3A-A=(3^2+3^3+3^4 .... +3^2018+3^2020)
-(3^1+3^2+3^3+3^4 .... +3^2018+3^2019)
2A= 3^2020-3^1
=>2A=(...1)-(...3)
=>A=(...8)
...........
\(\frac{1}{2}T=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2019}{2^{2019}}\)
\(T-\frac{1}{2}T=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}-\frac{1}{2^{2019}}\)
=> \(\frac{1}{2}T=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2018}}-\frac{1}{2^{2019}}\)
=> \(T=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}-\frac{1}{2^{2018}}\)
=> \(2T=4+2+1+\frac{1}{2}+...+\frac{1}{2^{2016}}-\frac{1}{2^{2017}}\)
=> \(2T-T=4-\frac{1}{2^{2017}}-\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\)
=> \(T=4-\frac{2}{2^{2017}}+\frac{1}{2^{2018}}=\frac{2^{2020}}{2^{2018}}-\frac{4}{2^{2018}}+\frac{1}{2^{2018}}=\frac{2^{2020}-3}{2^{2018}}\)
Bổ sung:
Vì \(T=4-\frac{2}{2^{2017}}+\frac{1}{2^{2018}}\)
=> T không phải là số tự nhiên.
Sửa đề: \(A=1-\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2-\left(\dfrac{3}{4}\right)^3+...-\left(\dfrac{3}{4}\right)^{2019}\)
\(\Leftrightarrow A\cdot\dfrac{3}{4}=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...-\left(\dfrac{3}{4}\right)^{2020}\)
=>\(A\cdot\left(\dfrac{3}{4}+1\right)=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...-\left(\dfrac{3}{4}\right)^{2020}+1-\dfrac{3}{4}+...-\left(\dfrac{3}{4}\right)^{2019}\)
=>\(A\cdot\dfrac{7}{4}=\dfrac{-3^{2020}}{4^{2020}}+1=\dfrac{4^{2020}-3^{2020}}{4^{2020}}\)
=>\(A=\dfrac{4^{2020}-3^{2020}}{4^{2019}\cdot7}\) không phải là số nguyên