Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy nếu \(A\cap B=\varnothing\Rightarrow A\in[-3;3)\Rightarrow\left\{{}\begin{matrix}m-1\ge-3\\\dfrac{m+3}{2}< 3\end{matrix}\right.\)
\(\Leftrightarrow-2\le m< 3\)
Do đó để \(A\cap B\ne\varnothing\Rightarrow m\notin[-2;3)\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge3\end{matrix}\right.\)
Bài 6:
a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2
=>m<=1 hoặc m>=-1
b: Để A là tập con của B thì m-1>-2 và 4<=2m+2
=>m>-1 và 2m+2>=4
=>m>-1 và m>=1
=>m>=1
c: Để B là tập con của B thì m-1<-2 và 2m+2<=4
=>m<-1 và m<=1
=>m<-1
Để A giao B khác rỗng thì \(7-4m< =4-m\)
=>-3m<=-3
=>m>=1
=>Chọn A
\(A\cap B\ne\varnothing\Leftrightarrow\left[{}\begin{matrix}m+1< 2m-1< m+3\\m+1< 2m< m+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2< m< 4\\1< m< 3\end{matrix}\right.\) \(\Rightarrow1< m< 4\)
\(A=\left(-3;-1\right)\cup\left(1;2\right)\)
\(B=\left(-1;+\infty\right)\)
\(C=\left(-\infty;2m\right)\)
\(A\cap B=\left(-3;-1\right)\)
Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)
\(\Leftrightarrow m\ge-\dfrac{1}{2}\)
Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài
\(A\cap B=\varnothing\Leftrightarrow m< 2\)
\(A\cap B\ne\varnothing\Leftrightarrow m\ge2\)
\(A\in B\Leftrightarrow m\ge4\)