Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ta có:
a + b + c = 0
=> a = -(b + c)
=> a2 = [-(b + c)]2
=> a2 = b2 + 2bc + c2
=> a2 - b2 - c2 = 2bc
=> ( a2 - b2 - c2)2 = (2bc)2
=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2
=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
=> 2(a4 + b4 + c4) = 1
=> a4 + b4 + c4 = \(\dfrac{1}{2}\)
Lời giải:
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=[(a+b+c)^2-2(ab+bc+ac)]^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$
$=[1^2-2(-1)]^2-2[(-1)^2-2(-1).1]=3$
Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\) thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)
https://olm.vn/hoi-dap/detail/108617134952.html
Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo
Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1
⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1
Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4
⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2
+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự
Từ a + b + c =0 => -a = -(b + c) => a2 = (b + c)2
<=> a2 - b2 - c2 = 2bc
<=> (a2 - b2 - c2)2 = 4b2c2
<=> a4 + b4 + c4 - 2a2b2 + 2b2c2 - 2c2a2 = 4b2c2
<=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2c2a2
<=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
<=> a4 + b4 + c4 = \(\frac{\left(a^2+b^2+c^2\right)^2}{2}\) (đpcm)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=-5\)
\(\Rightarrow\left(ab+bc+ca\right)^2=25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=25\)
\(\Rightarrow a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\)
\(=10^2-2.25=50\)
Ta có: a+b+c=0 ⇒(a+b+c)2=0
Hay a2+b2+c2+2ab+2bc+2ca=0
1+2(ac+bc+ca)=0
ab+bc+ca=\(\dfrac{-1}{2}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\left(1\right)\)
\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+b^2ac+c^2ab+a^bc=a^2b^2+b^2c^2+c^2+a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2=25\)
hay \(2\left(a^2b^2+b^2c^2+c^2a^2\right)=50\left(2\right)\)
Từ (1) và (2) ⇒a4+b4+c4=50
Ta có: a + b + c = 0
\(\Rightarrow\) (a + b + c)2 = 0
\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0
\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)
\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\) (Vì a + b + c = 0)
Lại có: a2 + b2 + c2 = 2009
\(\Rightarrow\) (a2 + b2 + c2)2 = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5
Chúc bn học tốt!
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
Bình phương hai vế:
\(\left(a^2+b^2+c^2\right)^2=[-2\left(ab+bc+ac\right)]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\right)\)(*)
\(\Leftrightarrow a^4+b^4+c^4=4[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)]-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(**)
Từ (*) và (**):
\(2\left(a^4b^4c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)