Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{6n-2}{2n+1}=\frac{3(2n+1)-5}{2n+1}=3-\frac{5}{2n+1}$
Để $A$ nguyên thì $\frac{5}{2n+1}$ nguyên.
Với $n$ là stn thì điều này xảy ra khi $5\vdots 2n+1$
$\Rightarrow 2n+1\in\left\{1; 5\right\}$ (do $2n+1>0$ với mọi $n$ tự nhiên)
$\Rightarrow n\in\left\{0; 2\right\}$ (tm)
6n + 3 \(⋮\)2n + 5
=> 6n + 15 - 12 \(⋮\)2n + 5
=> 3 . ( 2n + 5 ) - 12 \(⋮\)2n + 5 mà 3 . ( 2n + 5 ) \(⋮\)2n + 5 => 12 chia hết cho 2n + 5
=> 2n + 5 thuộc Ư ( 12 ) = { - 12 ; - 6 ; - 4 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
Còn lại bạn tự làm nha
\(3-2n⋮n-1\)
\(\Rightarrow4-1-2n⋮n-1\)
\(\Rightarrow4-2n-1⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)
Ta có bảng sau :
n - 1 | - 1 | 1 | - 2 | 2 | - 4 | 4 |
n | 0 | 2 | - 1 | 3 | - 3 | 5 |
Vậy .......
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
GTLN = 16
n = -2
nha bạn chúc bạn học tốt nha
A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0 ⇒ n # -1/3)
A \(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1
⇒ 6n + 2 - 5 ⋮ 3n + 1
⇒ 2.( 3n + 1) - 5 ⋮ 3n + 1
⇒ 5 ⋮ 3n + 1
⇒ 3n + 1 \(\in\) { -5; -1; 1; 5}
⇒ n\(\in\) {-2; -2/3; 0; 4/3}
vì n \(\in\) Z nên n \(\in\) { -2; 0}
Vậy n \(\in\) { -2; 0}
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )
\(A=\dfrac{6n-1}{2n+3}=\dfrac{3\left(2n+3\right)-10}{2n+3}\\ =3-\dfrac{10}{2n+3}\)
Để A nguyên thì: \(\dfrac{10}{2n+3}\) nguyên
\(\Rightarrow10⋮\left(2n+3\right)\)
\(\Rightarrow2n+3\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\\ \Rightarrow2n\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\\ \Rightarrow n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};1;-4;\dfrac{7}{2};-\dfrac{13}{2}\right\}\)