Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a=1-\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2-\left(\frac{2019}{2020}\right)^3+...+\left(\frac{2019}{2020}\right)^{2020}\)
=> \(\frac{2019}{2020}.a=\frac{2019}{2020}-\left(\frac{2019}{2020}\right)^2+\left(\frac{2019}{2020}\right)^3-...+\left(\frac{2019}{2020}\right)^{2020}-\left(\frac{2019}{2020}\right)^{2021}\)
Lấy
\(a+\frac{2019}{2020}a=1-\left(\frac{2019}{2020}\right)^{2021}\)
<=> \(a\left(1+\frac{2019}{2020}\right)=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.\frac{4039}{2020}=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right]\)
<=> \(a.=\left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}\)
Vì : \(0< \left(\frac{2019}{2020}\right)^{2021}< 1\)
=> \(0< 1-\left(\frac{2019}{2020}\right)^{2021}< 1\)
và \(0< \frac{2020}{4039}< 1\)
=> \(0< \left[1-\left(\frac{2019}{2020}\right)^{2021}\right].\frac{2020}{4039}< 1\)
=> 0 < a < 1
=> a không phải là một số nguyên.
Em kiểm tra lại đề bài nhé!
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{2019}}{a_{2020}}=\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\)
=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2019}}{a_{2020}}=\left(\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\right)^{2019}\)
=> \(\frac{a_1}{a_{2020}}=\left(\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\right)^{2019}\)
B1:
\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)
+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)
+Dấu "=" xảy ra khi
\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)
\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)
+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)
sao ko có ai giúp mk vậy
Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >