Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
=> S là số chính phương
S = 3^0 + 3^2 + 3^4 + 3^6 + ... + 3^2002
Ta thấy tổng S gồm ( 2002 - 0 ) : 2 + 1 = 1002 ( số hạng ), mỗi số hạng đều chia 4 dư 1 => S chia 4 dư 1002 hay S chia 4 dư 2
Mà số chính phương chia 4 chỉ có thể dư 0 hoặc 1 nên S không là số chính phương
Vậy S không là số chính phương
A không phải là số chính phương nhé!
Vì ta thấy rằng các số được cộng vào A là các số mũ của 3, bắt đầu từ 3 mũ 1 đến 3 mũ 62. Ta có thể viết lại A dưới dạng tổng sau:
A = 1 + 3 + 3 mũ 2 + ... + 3 mũ 61 + 3 mũ 62 = (3 mũ 0) + (3 mũ 1) + (3 mũ 2) + ... + (3 mũ 61) + (3 mũ 62)
Chú ý rằng đây là cấp số nhân với a_1 = 3 mũ 0 = 1 và r = 3.
Do đó, ta có thể sử dụng công thức tổng cấp số nhân để tính tổng:
A = (3 mũ 63 - 1) / (3 - 1) - 3 mũ 0 = 3 mũ 63 / 2 - 1
Giá trị của A là một số chẵn, vì 3 mũ 63 là một số lẻ nên tổng giữa số này và số âm 1 cũng là một số lẻ. Tuy nhiên, số chẵn không phải là số chính phương, vì một số chính phương luôn có dạng 4k hoặc 4k+1 với k là một số nguyên không âm.
Ta tính được A=\(\frac{3^{2005}-3}{2}\)=\(\frac{3\cdot\left(3^{2004}-1\right)}{2}\)
Nhận thấy A chia hết cho 3.
Một số chính phương chia hết cho 3 phải chia hết cho 9
mà \(3^{2004}-1\)không chia hết cho 3 nên
\(3\cdot\left(3^{2004}-1\right)\)không chia hết cho 9 hay A không chia hết cho 9
Vậy A không phải là số chính phương
Chúc bạn học tốt!
Có thể làm như sau
32 chia hết cho 9
33 chia hết cho 9
34 chia hết cho 9
...
32004 chia hết cho 9
mà 3 không chia hết cho 9
nên A = 3+ 3^2+3^3+3^4+...+3^2004 không chia hết cho 9
vậy A không là số chính phương
giả sử A là số chính phương
Ta có: \(A=3+3^2+3^3+...+3^{2004}\)
\(=3.\left(1+3+3^2+....+3^{2003}\right)\)
=> A chia hết cho 3
=> A chia hết cho 32 (vì A là số chính phương)
=> 1 + 3 + 32 + ... + 32003 chia hết cho 3 (Vô lí)
=> A không phải là số chính phương
P/s: Không biết đúng không, làm đại
Ta có : \(3⋮3,3^2⋮3,3^3⋮3,.....,3^{2004}⋮3\)
=> A\(⋮\)3 (1)
ta lại có : \(3^2⋮3^2,3^3⋮3^2,....,3^{2004}⋮3^2\) mà 3 không chia hết cho \(3^2\)
=> A không chia hết cho 3^2 (2)
từ (1) , (2) => A không là số chính phương
a) Số số hàng trong tổng A là:
\(\frac{\left(2n+1-1\right)}{2}+1=n+1\)
\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
Do n là số tự nhiên nên A là số chính phương.
b) Số số hạng trong tổng B là:
\(\frac{2n-2}{2}+1=n\)
\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)
Vậy số B không thể là số chính phương.
Giả sử A là số chính phương
A = 3 + 32 + 33 +...+ 32004
A = 3(1 + 3 + 32 +...+ 32004)
=> A chia hết cho 3
=> A chia hết cho 32 (Vì A là số chính phương)
=> 1 + 3 + 32 +...+ 32004 chia hết cho 3 (Điều này rõ ràng vô lí)
Vậy A không là số chính phương
A=3+32+....+330
A=(3+32+33)+(34+35+36)+...+(328+329+330)
A=3(1+3+9)+34(1+3+9)+.....+328(1+3+9)
A=3.13+34.13+......+328.13
A=13(3+34+.....+328)
=> A chia hết cho 13
Mình chỉ biết làm như thế thôi à bạn (nhưng nếu bạn thay số 52 thành 40 thì mình làm đc)
Mình không biết làm câu b nha...
KB với mình chứ?