Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4A=4.(1+4+4^2+4^3+........+4^23)
4A-1=(4+4^2+4^3+4^4+........+4^23+4^24)
-(1+4^1+4^2+4^3+.........+4^23)
=>3A=4^24-1
=3A+1=4^24
Vì 3A+1=4^24=(4^3)^8=64^8>63^7 (Cơ số lớn hơn , số mũ lớn hơn)
Vậy 3A+1>63^7
Ta có : A = 1 + 4 + 42 + 43 + ..... + 423
=> 4A = 4 + 42 + 43 + ..... + 424
=> 4A - A = 424 - 1
=> 3A = 424 - 1
=> 3A + 1 = 424 = (43)8 = 648 > 637
Vậy 3A + 1 > 637
Ta co A =4^0+4^1+...+4^23
lai co 4A=4(4^0+4^1+4^2+...+4^23)
4A=4^1+4^2+...4^24
Mà 3A=4A-A=(4^1+4^2+...4^24)-(4^0+4^1+...+4^23)
3A=4^24-4^0=4^24-1
3A+1=4^24-1+1+4^24
khúc sau đổi về rồi so sánh
nhớ nhá
4A =4 +42+43 +....+424
3A =4A-A =424 -1
=>3A + 1 = 424 = 648 > 637
Vậy 3A +1 > 637
4A=4.(1+4+4^2+4^3+........+4^23)
4A-1=(4+4^2+4^3+4^4+........+4^23+4^24)
-(1+4^1+4^2+4^3+.........+4^23)
=>3A=4^24-1
=3A+1=4^24
Vì 3A+1=4^24=(4^3)^8=64^8>63^7 (Cơ số lớn hơn , số mũ lớn hơn)
Vậy 3A+1>63^7
\(A=4^o+4^1+4^2+4^3+......+4^{23}\)
\(4A=4+4^2+4^3+4^4+......+4^{24}\)
\(3A=4^{24}-4^o\)
\(3A=4^{24}-1\)
\(3A+1=4^{24}\)
\(3A=\left(4^3\right)^8=64^8\)
Suy ra \(3A+1\ge64^7\).
Ta có: \(A=4^0+4^1+4^2+...+4^{20}\)
Nhân A với 4 ta có:
\(4A=4\left(4^0+4^1+4^2+...+4^{20}\right)\)
=> \(4A-A=\left(4^1+4^2+4^3+...+4^{21}\right)-\left(4^0+4^1+4^2+...+4^{20}\right)\)
=> \(A\left(4-1\right)=4^{21}-4^0\)
=> \(3A=4^{21}-1\)
=> \(3A+1=4^{21}=\left(4^3\right)^7=64^7>63^7\)
Vậy 3A + 1 > 63^7.
Lời giải:
$A=1+4+4^2+4^3+....+4^{23}$
$4A=4+4^2+4^3+4^4+...+4^{24}$
$\Rightarrow 4A-A=4^{24}-1$
$\Rightarrow 3A+1=4^{24}=(4^3)^8=64^8> 63^7$