K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2021

Áp dụng \(\dfrac{\left(x+y\right)^2}{4}\ge xy\):

\(2\sqrt{ab}\left(a+b\right)\le\dfrac{\left(2\sqrt{ab}+a+b\right)^2}{4}=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\dfrac{1}{4}\)

<=> \(\sqrt{ab}\left(a+b\right)\le\dfrac{1}{8}\)

<=> \(ab\left(a+b\right)^2\le\dfrac{1}{64}\) => 64ab(a+b)2 \(\le1\)

Dấu "=" <=> a = b = \(\dfrac{1}{4}\)

27 tháng 10 2015

Áp dụng BĐT cô -si  \(\left(ab\le\frac{\left(a+b\right)^2}{4}\right)\) ta có :

\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+b+2\sqrt{ab}\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{8}\)

<=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)

<=> \(ab\left(a+b\right)^2\le\frac{1}{64}\)

Dấu '' = '' xảy ra khi a = b = \(\frac{1}{4}\)

27 tháng 10 2015

BPT <=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)

\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+2\sqrt{ab}+b\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}\)

 

10 tháng 7 2018

a) Áp dụng BĐT AM-GM ta có:

        \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

b)  Áp dụng BĐT AM-GM ta có:

    \(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

a) Ta có: \(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}\)

\(=5\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}-6\sqrt{a}\)

\(=-\sqrt{a}-15a\sqrt{a}+12\sqrt{a}b\)

b) Ta có: \(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)

\(=8b\sqrt{a}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45a^2b\sqrt{ab}\)

9 tháng 7 2021

a)\(5\sqrt{a}-3\sqrt{25a^3}+2\sqrt{36ab^2}-2\sqrt{9a}=5\sqrt{a}-15\left|a\right|\sqrt{a}+12\left|b\right|\sqrt{a}-6\sqrt{a}=-\sqrt{a}-15a\sqrt{a}+12b\sqrt{a}\)

b)\(\sqrt{64ab^3}-3\sqrt{12a^3b^3}+2ab\sqrt{9ab}-5b\sqrt{81a^3b}\)

\(=8\left|b\right|\sqrt{ab}-6\left|ab\right|\sqrt{3ab}+6ab\sqrt{ab}-45b\left|a\right|\sqrt{ab}\)

\(=8b\sqrt{ab}-6ab\sqrt{3ab}+6ab\sqrt{ab}-45ab\sqrt{ab}\)

\(=8b\sqrt{ab}-6ab\sqrt{3ab}-39ab\sqrt{ab}\)

30 tháng 5 2018

Ta có: \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)

\(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x+y+z=6\\x;y;z>0\end{matrix}\right.\)

Làm nốt :v

3 tháng 6 2018

cho em hỏi làm tiếp ntn nữa vậy Nguyễn Huy Thắng Lightning Farron

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

a) Sử dụng biến đổi tương đương:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow a+b+2\sqrt{ab}\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng với mọi \(a,b\geq 0\) )

Do đó ta có đpcm. Dấu "=" xảy ra khi \(ab=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\end{matrix}\right.\)

b)

Áp dụng BĐT phần a:

\(2012\sqrt{x-99}+2012\sqrt{105-x}=2012(\sqrt{x-99}+\sqrt{105-x})\geq 2012\sqrt{x-99+105-x}=2012\sqrt{6}\)

\(\sqrt{105-x}\geq 0\)

\(\Rightarrow 2012\sqrt{x-99}+2013\sqrt{105-x}\geq 2012\sqrt{6}+0=2012\sqrt{6}\)

\(2012\sqrt{x-99}+2013\sqrt{105-x}\leq 2012\sqrt{6}\) (theo giả thiết)

Suy ra \(2012\sqrt{x-99}+2013\sqrt{105-x}=2012\sqrt{6}\)

Dấu "=" xảy ra khi \(105-x=0\Rightarrow x=105\)

Vậy BPT có nghiệm $x=105$

8 tháng 11 2017

b/ \(a-\frac{1}{a}=\sqrt{a}+\frac{1}{\sqrt{a}}\)

\(\Leftrightarrow\sqrt{a}-\frac{1}{\sqrt{a}}=1\)

\(\Leftrightarrow a+\frac{1}{a}-2=1\)

\(\Leftrightarrow a+\frac{1}{a}=3\)

\(\Leftrightarrow a^2+\frac{1}{a^2}+2=9\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2=5\)

\(\Leftrightarrow a-\frac{1}{a}=\sqrt{5}\)

8 tháng 11 2017

a/ Ta có: \(x=\frac{1-5y}{2}\) thê vô ta được

\(x^2+y^2=y^2+\left(\frac{1-5y}{2}\right)^2=\frac{29y^2-10y+1}{4}\)

\(=\frac{1}{116}\left(29^2y^2-290y+29\right)=\frac{1}{116}\left[\left(29^2y^2-2.29y.5+25\right)+4\right]\)

\(=\frac{1}{116}\left[\left(29y-5\right)^2+4\right]\ge\frac{4}{116}=\frac{1}{29}\)

27 tháng 9 2021

Dấu "=" không xảy ra

\(ĐK:a,b,c>0\)

\(\left\{{}\begin{matrix}\sqrt{a}+\sqrt{b}+\sqrt{c}=2\\\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}=\dfrac{1}{\sqrt{abc}}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\\\sqrt{abc}\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\right)=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)=4\\\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=1\end{matrix}\right.\)

\(\Rightarrow a+b+c=2\Rightarrow a=2-b-c\)

\(b+c\ge4abc\)

\(\Leftrightarrow b+c-4abc\ge0\)

\(\Leftrightarrow b+c-4\left(2-b-c\right)bc\ge0\)

\(\Leftrightarrow\left(b-4bc+4bc^2\right)+\left(c-4bc+4cb^2\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{b}-2c\sqrt{b}\right)^2+\left(\sqrt{c}-2b\sqrt{c}\right)^2\ge0\) 

Mà do \(a,b,c>0\) nên dấu bằng không xảy ra

\(\Rightarrow b+c>4abc\)

27 tháng 9 2021

Bạn giỏi thật đúng như bản cover mình luôn. Chớ mà sử dụng Côsi nhanh hơn bạn ạ. Mình cảm ơn bạn nhé hahihahi