K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

Sửa đề cm a2018+b2018=2

Ta có:\(a^3+b^3=3ab-1\)

\(\Leftrightarrow a^3+b^3+1-3ab=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+1-3ab=0\)

\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+ab+b^2-a-b+1\right)=0\)

Vì a,b > 0 => a + b + 1 > 0

=>\(a^2+ab+b^2-a-b+1=0\)

=>2a2+2ab+2b2-2a-2b+2=0

=>(a2+2ab+b2)+(a2-2a+1)+(b2-2b+1)=0

=>(a+b)2+(a-1)2+(b-1)2=0

Mà \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow VT\ge0\)

=>\(\hept{\begin{cases}a+b=0\\a-1=0\\b-1=0\end{cases}}\)=> a=b=1

=>\(a^{2018}+b^{2018}=1+1=2\)

26 tháng 11 2018

Câu hỏi của Trung Nguyễn Thành - Toán lớp 8 - Học toán với OnlineMath tham khảo

26 tháng 7 2021

thôi mk tự lm đc rồi:

(a^3- 3ab^2)^2=361

=a^6- 6a^4b^2+ 9a^2 b^4

(b^3-3a^2b)^2=9604

=b^6- 6a^2b^4+9a^4 b^2

    cộng 2 vế->(a^2+b^2)^3= 9604+361= 9965

mn check hộ mk nha

10 tháng 8 2017

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2+b^2-ab-1\le0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)-\left(a+b\right)\le0\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)^2\le\left(a+b\right)\left(a^5+b^5\right)\) (Do \(a^3+b^3=a^5+b^5\) )

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow2a^3b^3\le ab^5+a^5b\)

\(\Leftrightarrow a^5b+ab^5+2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4+b^4+2a^2b^2\right)\ge0\)

\(\Leftrightarrow ab\left(a^2+b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2018

Lời giải:

\(a^3+b^3=3ab-1\)

\(\Leftrightarrow a^3+b^3-3ab+1=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)

\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)

Vì $a,b>0$ nên $a+b+1\neq 0$

Do đó:

\(a^2+b^2+1-a-b-ab=0\)

\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)

\(\Rightarrow a=b=1\)

Do đó: \(a^{2018}+b^{2019}=1+1=2\)

Ta có đpcm.

4 tháng 12 2022

em chưa hiểu tại sao dòng thứ 3 lại ra vậy ạ