Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh bổ đề sau:
\(\dfrac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3b^2a\)
\(\Leftrightarrow a^3+b^3-a^2b-b^2a\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)
Bất đẳng thức cuối luôn đúng, vậy ta có
\(M\le2a-b+2b-c+2c-a=a+b+c\)Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c\)
Ta có \(\frac{4a^2}{a-1}=\frac{4a^2-4+4}{a-1}=\frac{4\left(a^2-1\right)+4}{a-1}\)
\(=\frac{4\left(a-1\right)\left(a+1\right)+4}{a-1}=4\left(a+1\right)+\frac{4}{a-1}\)
\(=4\left(a-1\right)+\frac{4}{a-1}+8\)
Vì \(a>1\Rightarrow a-1>0\), áp dụng bđt cosi cho 2 số 4(a-1) và \(\frac{4}{a-1}\)ta được
\(4\left(a-1\right)+\frac{4}{a-1}\ge2\sqrt{\frac{4\left(a-1\right).4}{a-1}}=2\sqrt{4^2}=8\)
\(\Leftrightarrow4\left(a-1\right)+\frac{4}{a-1}+8\ge16\)
\(\Leftrightarrow\frac{4a^2}{a-1}\ge16\) (1)
Chững minh tương tự, ta được
\(\frac{5b^2}{b-1}\ge20\) (2)
\(\frac{3c^2}{c-1}\ge12\) (3)
Cộng (1)(2)(3) ta được
\(\frac{4a^2}{a-1}+\frac{5b^2}{b-1}+\frac{3b^2}{c-1}\ge48\)
Lời giải:
Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.
Áp dụng vào bài:
$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$
$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$
Tương tự:
$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$
Cộng theo vế:
$\Rightarrow \text{VT}\leq a+b+c=3$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(VT=\dfrac{a^3bc}{c+ab^2c}+\dfrac{ab^3c}{a+abc^2}+\dfrac{abc^3}{b+a^2bc}\)
\(=abc\left(\dfrac{a^2}{c+ab^2c}+\dfrac{b^2}{a+abc^2}+\dfrac{c^2}{b+a^2bc}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng engel có:
\(VT\ge\dfrac{abc\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}\)\(=\dfrac{abc\left(a+b+c\right)}{1+abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy...
Sai đề không bạn,tại a=b=c=2 thay vào không thỏa mãn nha
Bài 1:
dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .
Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)
Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)
\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)
P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf
\(+\frac{20b^3-\left(a^3+b^3\right)}{ab+5b^2}\le\frac{20b^3-ab\left(a+b\right)}{ab+5b^2}=\frac{b\left(20b^2-a^2-ab\right)}{b\left(a+5b\right)}=\frac{\left(4b-a\right)\left(a+5b\right)}{a+5b}=4b-a\)
( áp dụng bđt : \(a^3+b^3\ge ab\left(a+b\right)\) ( biến đổi tương đương là c/m đc ) )
Dấu "=" \(\Leftrightarrow a=b\)
+ Tương tự : \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b\) Dấu "=" <=> b = c
\(\frac{19a^3-c^3}{ac+5a^2}\le4a-c\) Dấu "=" \(\Leftrightarrow a=c\)
Cộng vế theo vế ta có đpcm. Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{3}\)
qua vo van
Thôi làm luôn nãy h chém nhiều mỏi tay quá. Bổ sung điều kiện a;b;c>1
\(\dfrac{4a^2}{a-1}+\dfrac{5b^2}{b-1}+\dfrac{3c^2}{c-1}\ge48\)
\(\Rightarrow\left(\dfrac{4a^2}{a-1}-16\right)+\left(\dfrac{5b^2}{b-1}-20\right)+\left(\dfrac{3c^2}{c-1}-12\right)\ge0\)
\(\Rightarrow\dfrac{4a^2-16a+16}{a-1}+\dfrac{5b^2-20b+20}{b-1}+\dfrac{3c^2-12c+12}{c-1}\ge0\)
\(\Rightarrow\dfrac{4\left(a-2\right)^2}{a-1}+\dfrac{5\left(b-2\right)^2}{b-1}+\dfrac{3\left(c-2\right)^2}{c-1}\ge0\) (đúng)
Dấu "=" khi \(a=b=c=2\)