K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 9^2+12^2=15cm

BH=9^2/15=5,4cm

CH=15-5,4=9,6cm

b: góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB+AN*AC+MN^2=3*AH^2

13 tháng 7 2023

Cảm ơn bạn nhiều

 

Bài 2: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:

\(AM\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:

\(AN\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)

\(\widehat{ANH}=90^0\)

\(\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=MN

Ta có: \(AM\cdot AB+AN\cdot AC\)

\(=AH^2+AH^2\)

\(=2AH^2=2\cdot MN^2\)

15 tháng 7 2023

câu c,d bài 2

16 tháng 10 2023

a: BC=BH+CH

=4+9=13

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)

b: ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)

16 tháng 10 2023

Có hình vẽ ko ạ

20 tháng 11 2023

a: ΔAHB vuông tại H

=>\(AB^2=BH^2+AH^2\)

=>\(AH^2+5,4^2=9^2\)

=>\(AH^2=9^2-5,4^2=51,84\)

=>AH=7,2(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BC\cdot5,4=9^2=81\)

=>BC=15(cm)

BH+CH=BC

=>CH+5,4=15

=>CH=15-5,4=9,6(cm)

ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AC^2=9,6^2+7,2^2=144\)

=>AC=12(cm)

b:

Sửa đề: \(AH^3=BC\cdot BE\cdot CF\)

Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\) và \(CF\cdot CA=CH^2\)

=>\(CF=\dfrac{CH^2}{CA}\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=HB\cdot HC\)

Xét ΔACH vuông tại H có HF là đường cao

nên \(CF\cdot CA=CH^2;AF\cdot AC=AH^2\)

=>\(CF=\dfrac{CH^2}{CA}\)

\(BC\cdot BE\cdot CF=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)

\(=\dfrac{BC}{AB\cdot AC}\cdot BH^2\cdot CH^2\)

\(=\dfrac{BC}{AH\cdot BC}\cdot AH^4\)

\(=\dfrac{AH^4}{AH}=AH^3\)

c: \(AE\cdot AB=AH^2\)

=>\(AE\cdot9=7,2^2\)

=>\(AE=\dfrac{7.2^2}{9}=5,76\left(cm\right)\)

\(AE\cdot AB=AH^2\)

\(AF\cdot AC=AH^2\)

Do đó: \(AE\cdot AB=AF\cdot AC\)

=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF đồng dạng với ΔACB

=>\(\dfrac{S_{AEF}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2=\left(\dfrac{5.76}{12}\right)^2=\dfrac{144}{625}\)

=>\(S_{AEF}=\dfrac{144}{625}\cdot S_{ACB}=\dfrac{144}{625}\cdot\dfrac{1}{2}\cdot12\cdot9=12,4416\left(cm^2\right)\)

a: AB/AC=2/3

=>HB/HC=4/9

=>HB/4=HC/9=(HB+HC)/(4+9)=2*căn 13/13

=>HB=8/13*căn 13; HC=18/13*căn 13(cm)

\(AH=\sqrt{HB\cdot HC}=\dfrac{12\sqrt{13}}{13}\left(cm\right)\)

23 tháng 7 2023

a) \(AH^2=BH.CH=3,6.6,4=23,04\)

\(\Rightarrow AH=4,8\left(cm\right)\)

\(AC^2=AH^2+HC^2=23,04+40,96=64\)

\(\Rightarrow AC=8\left(cm\right)\)

\(AB^2=AH^2+BH^2=23,04+12,96=36\)

\(\Rightarrow AB=6\left(cm\right)\)

\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)

\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)

\(\Rightarrow C=90^o-53^o=37^o\)

b) Xét Δ vuông ABH, có đường cao DH ta có :

\(AH^2=AD.AB\left(1\right)\)

Tương tự  Δ vuông ACH :

\(AH^2=AE.AC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)

a: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

b: Xét ΔHAB vuông tại H có HM là đường cao

nên MA*MB=HM^2

ΔHAC vuông tại H có HN là đường cao

nên NA*NC=HN^2

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>AH=MN

=>MN^2=AH^2=HB*HC

=>HB*HC=MA*MB+NA*NC

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=NM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

mà AH=NM

nên MN=6cm