Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
a: BC=BH+CH
=4+9=13
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>AH=6
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)
b: ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: ΔAHB vuông tại H
=>\(AB^2=BH^2+AH^2\)
=>\(AH^2+5,4^2=9^2\)
=>\(AH^2=9^2-5,4^2=51,84\)
=>AH=7,2(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC\cdot5,4=9^2=81\)
=>BC=15(cm)
BH+CH=BC
=>CH+5,4=15
=>CH=15-5,4=9,6(cm)
ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AC^2=9,6^2+7,2^2=144\)
=>AC=12(cm)
b:
Sửa đề: \(AH^3=BC\cdot BE\cdot CF\)
Xét ΔABH vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\) và \(CF\cdot CA=CH^2\)
=>\(CF=\dfrac{CH^2}{CA}\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=HB\cdot HC\)
Xét ΔACH vuông tại H có HF là đường cao
nên \(CF\cdot CA=CH^2;AF\cdot AC=AH^2\)
=>\(CF=\dfrac{CH^2}{CA}\)
\(BC\cdot BE\cdot CF=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)
\(=\dfrac{BC}{AB\cdot AC}\cdot BH^2\cdot CH^2\)
\(=\dfrac{BC}{AH\cdot BC}\cdot AH^4\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(AE\cdot AB=AH^2\)
=>\(AE\cdot9=7,2^2\)
=>\(AE=\dfrac{7.2^2}{9}=5,76\left(cm\right)\)
\(AE\cdot AB=AH^2\)
\(AF\cdot AC=AH^2\)
Do đó: \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF đồng dạng với ΔACB
=>\(\dfrac{S_{AEF}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2=\left(\dfrac{5.76}{12}\right)^2=\dfrac{144}{625}\)
=>\(S_{AEF}=\dfrac{144}{625}\cdot S_{ACB}=\dfrac{144}{625}\cdot\dfrac{1}{2}\cdot12\cdot9=12,4416\left(cm^2\right)\)
a: AB/AC=2/3
=>HB/HC=4/9
=>HB/4=HC/9=(HB+HC)/(4+9)=2*căn 13/13
=>HB=8/13*căn 13; HC=18/13*căn 13(cm)
\(AH=\sqrt{HB\cdot HC}=\dfrac{12\sqrt{13}}{13}\left(cm\right)\)
a) \(AH^2=BH.CH=3,6.6,4=23,04\)
\(\Rightarrow AH=4,8\left(cm\right)\)
\(AC^2=AH^2+HC^2=23,04+40,96=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB^2=AH^2+BH^2=23,04+12,96=36\)
\(\Rightarrow AB=6\left(cm\right)\)
\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)
\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)
\(\Rightarrow C=90^o-53^o=37^o\)
b) Xét Δ vuông ABH, có đường cao DH ta có :
\(AH^2=AD.AB\left(1\right)\)
Tương tự Δ vuông ACH :
\(AH^2=AE.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
b: Xét ΔHAB vuông tại H có HM là đường cao
nên MA*MB=HM^2
ΔHAC vuông tại H có HN là đường cao
nên NA*NC=HN^2
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>AH=MN
=>MN^2=AH^2=HB*HC
=>HB*HC=MA*MB+NA*NC
a: XétΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b: Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: AH=NM
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay AH=6(cm)
mà AH=NM
nên MN=6cm
a: BC=căn 9^2+12^2=15cm
BH=9^2/15=5,4cm
CH=15-5,4=9,6cm
b: góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB+AN*AC+MN^2=3*AH^2
Cảm ơn bạn nhiều