Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/5x6 + 1/6x7 + 1/7x8 + 1/8 x9 + 1/9x10 + 1 /10x11 + 1/11x12
1/5 - 1/6+ 1/6 - 1/7 + 1/7 - 1/8+ 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12
= 1/5 - 1/12
= 7/60
\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}+\dfrac{1}{156}+\dfrac{1}{182}+\dfrac{1}{210}\\ =\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}+\dfrac{1}{12.13}+\dfrac{1}{13.14}+\dfrac{1}{14.15}\\ =\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{13}-\dfrac{1}{14}\\ =\dfrac{1}{5}-\dfrac{1}{14}\\ =\dfrac{14}{70}-\dfrac{5}{70}=\dfrac{9}{70}\)
\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-\dfrac{1}{30}-\dfrac{1}{42}-\dfrac{1}{56}-\dfrac{1}{72}-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{3.4}\) - \(\dfrac{1}{4.5}\) - \(\dfrac{1}{5.6}\) - \(\dfrac{1}{6.7}\) - \(\dfrac{1}{7.8}\)- \(\dfrac{1}{8.9}\) - \(\dfrac{1}{9.10}\) - \(\dfrac{1}{10.11}\) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+ \(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\) + \(\dfrac{1}{10.11}\) =\(x\)-\(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+ \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)
\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{11}\) = \(x\) - \(\dfrac{5}{13}\)
\(x-\dfrac{5}{13}=\dfrac{1}{11}\)
\(x\) = \(\dfrac{1}{11}\) + \(\dfrac{5}{13}\)
\(x\) = \(\dfrac{68}{143}\)
Bài 1: Ta có:
\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)
\(=\dfrac{20}{8.14}+\dfrac{20}{14.20}+\dfrac{20}{20.26}+\dfrac{20}{26.32}\)
\(=\dfrac{20}{6}\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+\dfrac{6}{26.32}\right)\)
\(=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+...+\dfrac{1}{26}-\dfrac{1}{32}\right)\)
\(=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{32}\right)=\dfrac{20}{6}.\dfrac{3}{32}=\dfrac{5}{16}\)
Vậy \(M=\dfrac{5}{16}\)
Bài 2: Ta có:
\(A=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{210}\)
\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{14.15}\)
\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{6}-\dfrac{1}{15}=\dfrac{1}{10}\)
Vậy \(A=\dfrac{1}{10}\)
Giải:
\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}.\)
\(M=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+\dfrac{5}{208}.\)
\(M=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+\dfrac{5}{13.16}.\)
\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right).\)
\(M=\dfrac{5}{3}\left[\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+\left(\dfrac{1}{10}-\dfrac{1}{10}\right)+\left(\dfrac{1}{13}-\dfrac{1}{13}\right)+\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\right].\)
\(M=\dfrac{5}{3}\left[0+0+0+\left(\dfrac{1}{4}-\dfrac{1}{16}\right).\right]\)
\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{16}\right).\)
\(M=\dfrac{5}{3}\left(\dfrac{4}{16}-\dfrac{1}{16}\right).\)
\(M=\dfrac{5}{3}.\dfrac{3}{16}.\)
\(M=\dfrac{15}{48}=\dfrac{5}{16}.\)
Giải:
a)A=1/56+1/72+1/90+1/110+1/132+1/156
A=1/7.8+1/8.9+1/9.10+1/10.11+1/11.12+1/12.13
A=1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12+1/12-1/13
A=1/7-1/13
A=6/91
b)B=4/21+4/77+4/165+4/285+4/437+4/621
B=4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27
B=1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27
B=1/3-1/27
B=8/27
c) C=1/21+1/77+1/165+1/285+1/437+1/621
C=1/3.7+1/7.11+1/11.15+1/15.19+1/19.23+1/23.27
C=1/4.(4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27)
C=1/4.(1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27)
C=1/4.(1/3-1/27)
C=1/4.8/27
C=2/27
d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/21.26+1/26.31
D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21+5/21.26+5/26.31)
D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26+1/26-1/31)
D=1/5.(1/1-1/31)
D=1/5.30/31
D=6/31
Nếu câu d cậu viết thiếu thì làm như vầy nhé!
Chúc bạn học tốt!
Nếu như câu d ko chép sai thì làm thế này nha:
d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/26.31
D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21)+1/806
D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21)+1/806
D=1/5.(1/1-1/21)+1/806
D=1/5.20/21+1/806
D=4/21+1/806
D=3245/16926
Chúc bạn học tốt!
`[-1]/2+[-1]/6+[-1]/12+[-1]/20+[-1]/30+[-1]/42+[-1]/56+[-1]/72+[-1]/90`
`=(-1)(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)`
`=(-1)(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)`
`=(-1)(1-1/10)`
`=(-1). 9/10=-9/10`
A = \(\dfrac{-1}{2}\) + \(\dfrac{-1}{6}\)+ \(\dfrac{-1}{12}\)+ \(\dfrac{-1}{20}\)+ \(\dfrac{-1}{30}\)+ \(\dfrac{-1}{42}\)+ \(\dfrac{-1}{56}\)+ \(\dfrac{-1}{72}\)+ \(\dfrac{-1}{90}\)
A = \(\dfrac{-1}{2}\) + \(\dfrac{-1}{2\times3}\)+ \(\dfrac{-1}{3\times4}\)+ \(\dfrac{-1}{4\times5}\)+ \(\dfrac{-1}{5\times6}\)+ \(\dfrac{-1}{6\times7}\)+ \(\dfrac{-1}{7\times8}\)+ \(\dfrac{-1}{8\times9}\)+ + \(\dfrac{-1}{9\times10}\)
A = - (\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)- \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+ \(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+ \(\dfrac{1}{9}\)-\(\dfrac{1}{10}\))
A = -(1-\(\dfrac{1}{10}\))
A = \(\dfrac{-9}{10}\)
\(S=\dfrac{1}{2}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\)
\(S=\dfrac{1}{2}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}\)
\(S=\dfrac{1}{2}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)\(S=\dfrac{1}{2}+\dfrac{1}{5}-\dfrac{1}{11}\)
\(S=\dfrac{67}{110}\)
=9/10-(1/2+1/6+...+1/90)
=9/10-(1-1/2+1/2-1/3+...+1/9-1/10)
=9/10-9/10=0
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\\ =\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\\ =\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\\ =\dfrac{1}{3}-\dfrac{1}{9}\\ =\dfrac{2}{9}\)
\(B=\dfrac{-1}{20}+\dfrac{-1}{30}+...+\dfrac{-1}{132}\)
\(=-\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{11\cdot12}\right)\)
\(=-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{11}-\dfrac{1}{12}\right)\)
\(=-\left(\dfrac{1}{4}-\dfrac{1}{12}\right)=-\left(\dfrac{3}{12}-\dfrac{1}{12}\right)=-\dfrac{2}{12}=-\dfrac{1}{6}\)