Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Hàm số \(\left(d_1\right)y=-2x+3\)
Cho \(y=0=>x=\dfrac{3}{2}\) ta được điểm \(\left(\dfrac{3}{2};0\right)\)
Cho \(x=0=>y=3\) ta được điểm \(\left(0;3\right)\)
Vẽ đồ thị hàm số \(\left(d_1\right)\) đi qua hai điểm trên
hàm số \(\left(d_2\right)y=x-1\)
Cho \(y=0=>x=1\) ta được điểm \(\left(1;0\right)\)
Cho \(x=0=>y=-1\) ta được điểm \(\left(0;-1\right)\)
Vẽ đồ thị hàm số \(\left(d_2\right)\) đi qua hai điểm trên
# Bạn có thể tự vẽ nhé !!
b, Tọa độ giao điểm \(\left(d_1\right);\left(d_2\right)\) là nghiệm của pt
\(-2x+3=x-1\\ =>-3x=-4\\ =>x=\dfrac{4}{3}\)
Thay \(x=\dfrac{4}{3}\) vào \(\left(d_2\right)\)
\(\Rightarrow y=\dfrac{4}{3}-1=\dfrac{1}{3}\)
Vậy tọa độ giao điểm là : \(\left(\dfrac{4}{3};\dfrac{1}{3}\right)\)
c, Giả sử \(\left(d_3\right)y=ax+b\)
\(\left(d_3\right)\) đi qua \(A\left(-2;1\right)\) và song song với đường thẳng \(\left(d_1\right)y=-2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4.\left(-2\right)+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=9\left(t/m\right)\\a=-2\end{matrix}\right.\)
Vậy \(d_3:y=-2x+9\)
#Rinz
\(b,\text{PT hoành độ giao điểm: }-2x+5=x-1\Leftrightarrow x=2\Leftrightarrow y=1\Leftrightarrow A\left(2;1\right)\\ \text{Vậy }A\left(2;1\right)\text{ là giao điểm }\left(d_1\right)\text{ và }\left(d_2\right)\\ c,\text{Gọi }\left(d_3\right):y=ax+b\left(a\ne0\right)\text{ là đt cần tìm}\\ \left(d_3\right)\text{//}\left(d_1\right)\text{ và }M\left(-2;1\right)\in\left(d_3\right)\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne5\\-2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\\ \Leftrightarrow\left(d_3\right):y=-2x-1\)
b: Phương trình hoành độ giao điểm là:
\(2x+2=\dfrac{-1}{2}x-2\)
\(\Leftrightarrow x\cdot\dfrac{5}{2}=-4\)
hay x=-10
Thay x=-10 vào (d1), ta được:
\(y=-20+2=-18\)
a: Phương trình hoành độ giao điểm là:
2x+1=x+1
=>2x-x=1-1
=>x=0
Thay x=0 vào y=x+1, ta được:
y=0+1=1
=>A(0;1)
b: Vì (d4) có hệ số góc là -4 nên (d4): y=-4x+b
Thay x=0 và y=1 vào (d4), ta được:
b-4*0=1
=>b=1
=>y=-4x+1
c: Vì (d5)//(d6) nên (d5): y=0,5x+a
Thay x=0 và y=1 vào (d5), ta được:
a+0,5*0=1
=>a=1
=>y=0,5x+1
d: Thay x=0 và y=1 vào (d3), ta được:
0*(m+1)+2m-1=1
=>2m-1=1
=>2m=2
=>m=1
a) Tìm toạ độ giao điểm A của hai đường thẳng y = 3x - 2 (d1) và y = (2/3)x (d2):
Để tìm toạ độ giao điểm A của hai đường thẳng, ta có thể giải hệ phương trình sau:y = 3x - 2
y = (2/3)x
(2/3)x = 3x - 2
Giải phương trình này, ta được x = 3/4.Thay x = 3/4 vào phương trình y = (2/3)x, ta được y = (2/3)(3/4) = 7/4.Vậy toạ độ giao điểm A của hai đường thẳng (d1) và (d2) là A(3/4, 7/4).b) Viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng (d3) là y = 3x - 1:
Để viết phương trình đường thẳng (d) đi qua A và song song với đường thẳng (d3), ta có thể sử dụng công thức sau:y - y0 = m(x - x0)
Trong đó, (x0, y0) là toạ độ của điểm A và m là hệ số góc của đường thẳng (d3).
Thay các giá trị này vào công thức trên, ta được:y - 7/4 = 3(x - 3/4)
Sau khi sắp xếp lại các số hạng, ta được phương trình đường thẳng (d) là: y = 3x - 5/4.a) \(\left(d_1\right):y=-2x-2\)
\(\left(d_2\right):y=ax+b\)
\(\left(d_2\right)//d_1\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne-2\end{matrix}\right.\)
\(\Leftrightarrow\left(d_2\right):y=-2x+b\)
\(M\left(2;-2\right)\in\left(d_2\right)\Leftrightarrow-2.2+b=-2\)
\(\Leftrightarrow b=2\) \(\left(thỏa.đk.b\ne-2\right)\)
Vậy \(\left(d_2\right):y=-2x+2\)
b) \(\left\{{}\begin{matrix}\left(d_1\right):y=-2x-2\\\left(d_2\right):y=-2x+2\end{matrix}\right.\)
c) \(\left(d_3\right):y=x+m\)
\(\left(d_1\right)\cap\left(d_3\right)=A\left(x;0\right)\Leftrightarrow\left\{{}\begin{matrix}y=x+m\\y=-2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0=x+m\\0=-2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\x=-1\end{matrix}\right.\)
\(\Rightarrow\left(d_3\right):y=x+1\)
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{2}x-2=-2x+3\\y=-2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=5\\y=-2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
b: Vì (d3)//(d2) nên a=-2
Vậy: (d3): y=-2x+b
Thay x=-3 và y=4 vào (d3), ta được: b+6=4
hay b=-2