Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có P + N = M ⇒ P = M - N
= 5xy + 2x2- 2y2-5x2+ 3xy
= -3x2+ 8xy - 2y2
\(M+N=5x^2-xy-y^2-2\)
\(M-N=-x^2-5xy+3y^2-8\)
\(N-M=x^2+5xy-3y^2+8\)
a) Ta có: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
Vậy: \(M=x^2+11xy-y^2\)
b) Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
Vậy: \(N=-x^2+10xy-12y^2\)
a, (6x2+9xy-y2) - ( 5x2-2xy)=M
=> M= (6x2+9xy-y2) - ( 5x2-2xy)
=> M= 6x2+9xy-y2 - 5x2+2xy
=> M=(6x2- 5x2)+(9xy+2xy)-y2
=>M= 1x2 + 11xy - y2
Vậy M= 1x2 + 11xy - y2
b, N= (3xy-4y2) - (x2-7xy+8y2)
=> N= 3xy-4y2 - x2+7xy-8y2
=> N= (3xy+7xy)-(4y2+8y2)-x2
=> N= 10xy - 12y2 -x2
Vậy N= 10xy - 12y2 -x2
a: Ta có: \(M+5x^2-2xy=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
b: Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
a) cho A(x) = 0
\(=>2x^2-4x=0\)
\(x\left(2-4x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)\(B\left(y\right)=4y-8\)
cho B(y) = 0
\(4y-8=0\Rightarrow4y=8\Rightarrow y=2\)
c)\(C\left(t\right)=3t^2-6\)
cho C(t) = 0
\(=>3t^2-6=0=>3t^2=6=>t^2=2\left[{}\begin{matrix}t=\sqrt{2}\\t=-\sqrt{2}\end{matrix}\right.\)
d)\(M\left(x\right)=2x^2+1\)
cho M(x) = 0
\(2x^2+1=0\Rightarrow2x^2=-1\Rightarrow x^2=-\dfrac{1}{2}\left(vl\right)\)
vậy M(x) vô nghiệm
e) cho N(x) = 0
\(2x^2-8=0\)
\(2\left(x^2-4\right)=0\)
\(2\left(x^2+2x-2x-4\right)=0\)
\(2\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
21:
a: \(f\left(x\right)=4x^4-x^3-4x^2+x-1\)
\(g\left(x\right)=x^4+4x^3+x-5\)
b: f(x)-g(x)
=4x^4-x^3-4x^2+x-1-x^4-4x^3-x+5
=3x^4-5x^3-4x^2+4
f(x)+g(x)
=4x^4-x^3-4x^2+x-1+x^4+4x^3+x-5
=5x^4+3x^3-4x^2+2x-6
c: g(-1)=1-4-1-5=-9
2,
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
3,
a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1
P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)
P = x2 – y2 + 3y2 – 1 - x2 + 2y2
P = x2 – x2 – y2 + 3y2 + 2y2 – 1
P = 4y2 – 1.
Vậy P = 4y2 – 1.
b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5
Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)
Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz
Q = 7x2 – 4xyz + xy + 5
Vậy Q = 7x2 – 4xyz + xy + 5.
4,
a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3
= x2+2xy+(-3x3+3x3)+2y3-y3
=x2+2xy+2y3-y3
Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:
52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.
Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129
b,
Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có
M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8
= 1 -1 + 1 - 1+ 1 = 1.
Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1
5,
a, C=A+B
C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1
C = 2x2 – y + xy - x2y2
b) C + A = B => C = B - A
C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)
C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1
C = - x2y2 - xy + 3y - 2.
a) \(2x^2-3xy-2y^2=2\)
\(\Rightarrow2x^2+xy-4xy-2y^2=2\)
\(\Rightarrow x\left(2x+y\right)-2y\left(2x+y\right)=2\)
\(\Rightarrow\left(2x+y\right)\left(x-2y\right)=2\)
\(\Rightarrow\left(2x+y\right);\left(x-2y\right)\in\left\{-1;1;-2;2\right\}\)
Ta giải các hệ phương trình sau với x;y nguyên
1) \(\left\{{}\begin{matrix}2x+y=-1\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-2\\x-2y=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x+y=1\\x-2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=2\\x-2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=4\left(loại\right)\\x-2y=-1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+y=-2\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4x+2y=-4\\x-2y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=-5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}2x+y=2\\x-2y=1\end{matrix}\right.\) \(\left\{{}\begin{matrix}4x+2y=4\\x-2y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5x=5\\y=\dfrac{x+1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(1;1\right)\right\}\)
b) \(xy-y+x=9\)
\(\Rightarrow y\left(x-1\right)+x-1+1=9\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=8\)
\(\Rightarrow\left(x-1\right);\left(y+1\right)\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;-9\right);\left(2;7\right);\left(-1;-5\right);\left(3;3\right);\left(-3;-3\right);\left(5;1\right);\left(-7;-2\right);\left(9;0\right)\right\}\)
\(M+N=\left(2x^2+3xy+2y^2\right)+\left(-5x^2-3xy+2y^2+5\right)\\ =2x^2+3xy+2y^2-5x^2-3xy+2y^2+5\\ =-3x^2+4y^2+5\\ M-N=\left(2x^2+3xy+2y^2\right)-\left(-5x^2-3xy+2y^2+5\right)\\ =2x^2+3xy+2y^2+5x^2+3xy-2y^2-5\\ =7x^2+6xy-5\)
\(N-M=\left(-5x^2-3xy+2y^2+5\right)-\left(2x^2+3xy+2y^2\right)\\ =-5x^2-3xy+2y^2+5-2x^2-3xy-2y^2\\ =-7x^2-6xy+5\)