Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải
a) Tứ giác BHKC có : 2 đường chéo BK và CH cắt nhau tại A tại trung điểm mỗi đường
=> BHKC là hình bình hành
b) Tứ giác AHIK là hình bình hành nên AK//IH và AK =IH
=> AB // IH và AB =IH
Tứ giác ABIH là hình bình hành vậy IA // HB
=> AM là đường trung bình của tam giác BHC
=> MB = MC
c) chịu ko biết làm
a) Tứ giác BHKC có : 2 đường chéo BK và CH cắt nhau tại A tại trung điểm mỗi đường
=> BHKC là hình bình hành
b) Tứ giác AHIK là hình bình hành nên AK//IH và AK =IH
=> AB // IH và AB =IH
Tứ giác ABIH là hình bình hành vậy IA // HB
=> AM là đường trung bình của tam giác BHC
=> MB = MC
c) chịu
a: Xét ΔBNQ có
C là trung điểm của BQ
CA//NQ
Do đó: A là trung điểm của NB
Xét ΔCPM có
B là trung điểm của CP
CA//MP
DO đó: A là trung điểm của CM
Xét tứ giác BMNC có
A là trung điểm chung của BN và MC
nên BMNC là hình bình hành
b: Để ANKM là hình bình hành
nên AM//KN và AN//KM
=>AB//MK và AB=MK
=>ABMK là hình bình hành
=>AI//BM
Xét ΔCBM có
A là trung điểm của CA
AI//BM
DO đó; I là trung điểm của BC
a: Xét ΔBNQ có
C là trung điểm của BQ
CA//NQ
Do đó: A là trung điểm của NB
Xét ΔCPM có
B là trung điểm của CP
CA//MP
DO đó: A là trung điểm của CM
Xét tứ giác BMNC có
A là trung điểm chung của BN và MC
nên BMNC là hình bình hành
b: Để ANKM là hình bình hành
nên AM//KN và AN//KM
=>AB//MK và AB=MK
=>ABMK là hình bình hành
=>AI//BM
Xét ΔCBM có
A là trung điểm của CA
AI//BM
DO đó; I là trung điểm của BC
1. ta có AD = BC (gt)
mà DH = BF (gt)
=> AH =FC
xét ▲AHE và ▲FCG, có:
AE = CG (gt)
góc A = góc C (gt)
AH = FC (cmt)
=>▲AHE = ▲FCG (c.g.c)
=>HE = FG (2 cạnh t/ứ)
cmtt : HG = EF
Vậy EFGH là hbh (đpcm)