Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔAHB vuông tại H
mà HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H
mà HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
b: Vì góc AMH=góc ANH=90 độ
nên A,M,H,N cùng thuộc đường tròn đường kính AH
=>I là tâm đường tròn ngoại tiếp tứ giác AMHN
Để M,I,N thẳng hàng thì MN là đường kính của (O)
=>ΔABC vuông tại A
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b:
Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:
\(AD\cdot AB=AH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)
hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Xét ΔAED vuông tại A và ΔABC vuông tại A có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: ΔAED\(\sim\)ΔABC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)
hay AD=3(cm)
Vậy: AD=3cm
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: MN=AH
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC=AH^2\)
Gọi P là giao điểm của AM và IK
\(\Delta AKH\) vuông tại K có: HAK + AHK = 90o
\(\Delta AHC\) vuông tại H có: HAC + HCA = 90o
Từ 2 điều trên suy ra AHK = HCA (1)
Có: IA // HK (gt)
IH // AK (gt)
Do đó, IH = AK (t/c đoạn chắn)
\(\Delta IHK=\Delta AKH\) (2 cạnh góc vuông)
=> IKH = AHK (2 góc t/ứ) (2)
\(\Delta ABC\) vuông tại A có AM là trung tuyến nên \(AM=\dfrac{BC}{2}=MC\) => \(\Delta AMC\) cân tại M
=> MAC = MCA hay PAK = MCA (3)
Từ (1); (2) và (3) => HKP = PAK
<=> HKP + PKA = PAK + PKA
<=> 90o = PAK + PKA
\(\Delta PAK\) có: PAK + PKA + APK = 180o
<=> 90o + APK = 180o
<=> APK = 90o hay \(AM\perp IK\) (đpcm)