K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

a) xét \(\Delta MBE\)vuông tại E và \(\Delta HBE\)

có \(EM=EH\left(gt\right)\)

BE là cạnh chung

\(\Rightarrow\Delta MBE=\Delta HBE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{MBE}=\widehat{HBE}\)( 2 góc tương ứng)

xét \(\Delta MAE\)VUÔNG TẠI E và \(\Delta HAE\)VUÔNG TẠI E

CÓ EM=EH (gt)

AE LÀ CẠNH CHUNG

\(\Rightarrow\Delta MAE=\Delta HAE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{MAE}=\widehat{HAE}\)(2 GÓC TƯƠNG ỨNG)

XÉT \(\Delta ABM\)VÀ \(\Delta ABH\)

CÓ \(\widehat{MBE}=\widehat{HBE}\left(cmt\right)\)

AB LÀ CẠNH CHUNG

\(\widehat{MAE}=\widehat{HAE}\left(cmt\right)\)

\(\Rightarrow\Delta ABM=\Delta ABH\left(g-c-g\right)\)

MÀ TAM GIÁC ABH VUÔNG TẠI H

=> TAM GIÁC ABM VUÔNG TẠI M

=> \(AM\perp BM\)( ĐỊNH LÍ)

B) TA CÓ \(AC\perp AB\)

             \(HE\perp AB\)

\(\Rightarrow AC//HE\)(ĐỊNH LÍ)

\(\Rightarrow\widehat{EHA}=\widehat{HAF}\left(SLT\right)\)

XÉT \(\Delta EHA\)VUÔNG TẠI E VÀ \(\Delta FAH\)VUÔNG TẠI F

CÓ \(\widehat{EHA}=\widehat{HAF}\left(cmt\right)\)

HA LÀ CẠNH CHUNG

\(\Rightarrow\Delta EHA=\Delta FAH\left(ch-gn\right)\)

=> EA = FH (2 CẠNH TƯƠNG ỨNG)

XÉT \(\Delta EAH\)VUÔNG TẠI E VÀ \(\Delta HFE\)VUÔNG TẠI H

CÓ EA= FH (cmt)

EH LÀ CẠNH CHUNG

\(\Rightarrow\Delta EAH=\Delta HFE\left(cgv-cgv\right)\)

=> AH = EF (2 CẠNH TƯƠNG ỨNG)

CHÚC BN HỌC TỐT!!!!!!!!!!

26 tháng 2 2020

a, Xét △BAH vuông tại H và △CAH vuông tại H

Có: AH là cạnh chung

       AB = AC (gt)

=> △BAH = △CAH (ch-cgv)

=> BH = CH (2 cạnh tương ứng)

Mà H nằm giữa B, C

=> H là trung điểm BC

Ta có: BH + CH = BC => BH + BH = 12 => 2BH = 12 => BH = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2  

=> AH2 = 102 - 62 

=> AH2 = 64

=> AH = 8 (cm)

b, Ta có: MH = MB + BH và HN = HC + CN

Mà BH = HC (cmt) ; MB = CN (gt)

=> MH = HN

Xét △MHA vuông tại H và △NHA vuông tại H

Có: AH là cạnh chung

      MH = HN (cmt)

=> △MHA = △NHA (2cgv)

=> HMA = HNA (2 góc tương ứng)

Xét △AMN có: AMN = ANM (cmt) => △AMN cân tại A

c, Xét △MBE vuông tại E và △NCF vuông tại F

Có: EMB = FNC (cmt)

      MB = CN (gt)

=> △MBE = △NCF (ch-gn)

=> MBE = NCF (2 góc tương ứng)

d, Vì △MHA = △NHA (cmt) => MAH = NAH (2 góc tương ứng)

=> AH là phân giác của MAN

Ta có: AE + EM = AM và AF + FN = AN 

Mà EM = FN (△MBE = △NCF) ; AM = AN (△AMN cân tại A)

=> AE = AF

Xét △EAK vuông tại E và △FAK vuông tại F

Có: AK là cạnh chung

       AE = AF (cmt)

=> △EAK = △FAK (ch-cgv)

=> EAK = FAK (2 góc tương ứng)

=> AK là phân giác EAF => AK là phân giác MAN

Mà AH là phân giác của MAN

=> AK ≡ AH 

=> 3 điểm A, H, K thẳng hàng

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH