K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Ta có :

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Leftrightarrow\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

\(\Leftrightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abc-acy-bcx-abz-acy-bcx}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{bz-cy}{a}=0\\\dfrac{cx-az}{b}=0\\\dfrac{ay-bx}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

17 tháng 7 2018

cám ơn bạn nhiều

15 tháng 7 2023

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(=\dfrac{bxz-cxy}{ax}=\dfrac{cyx-ayz}{by}=\dfrac{azy-bxz}{cz}\)

\(=\dfrac{bxz-cxy+cyx-ayz+azy-bxz}{ax+by+cz}=0\)

\(\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\dfrac{y}{b}=\dfrac{z}{c}\)

Tương tự...

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(dpcm\right)\)

25 tháng 2 2018

Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina

Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron

Akai Haruma Võ Đông Anh Tuấn

mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)

17 tháng 8 2018

Bài 1:

1) \(a\left(b-c\right)+b\left(c-a\right)+c\left(a-b\right)\)

\(=ab-ac+bc-ba+ca-cb\)

\(=0\)

2) \(a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)\)

\(=abz-acy+bcx-baz+cay-cbx\)

\(=0\)

17 tháng 8 2018

Bài 2:

Ta có:

\(\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}\)

\(=\dfrac{\left(x^2+bx\right)+\left(ax+ab\right)}{\left(3bx-ax\right)+\left(3ab-a^2\right)}\)

\(=\dfrac{x\left(x+b\right)+a\left(x+b\right)}{x\left(3b-a\right)+a\left(3b-a\right)}\)

\(=\dfrac{\left(x+a\right)\left(x+b\right)}{\left(x+a\right)\left(3b-a\right)}\)

\(=\dfrac{x+b}{3b-a}\)

17 tháng 7 2018

Tham khảo tại :

Chứng minh rằng: nếu x/a = y/b = z/c thì (x^2 + y^2 + z^2) = (ax + by + ...

30 tháng 12 2020

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

30 tháng 12 2020

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

9 tháng 12 2021

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

9 tháng 12 2021

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)