K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

a, xét tgACO và tgBEO có: gCAO=gEBO = 90 độ

                                            OA=OB (O là trung điểm của AB)

                                             gAOC = gBOE (hai góc đối đỉnh)

=>tgACO=tgEBO(g.c.g)=>AC=BE;OC=OE (hai cạnh tương ứng)

xét tgCOD và tgEOD có:      OC=OE (cmt)

                                             gCOD=gEOD=90độ

                                             OD là cạnh chung 

=>tgCOD=tgEOD (c.g.c)

=> CD= DE (hai cạnh tương ứng)

mà DE=DB+BE =>CD=DB+BE 

mà BE=AC(cmt)=>CD=AC+BD

b, xét tgCOJ và tgEOJ có : OC=OE (cmt)

                                            gCOJ=gEOJ = 90độ

                                            OJ là cạnh chung

=>tgCOJ=tgEOJ (c.g.c)=>gJCO=gJEO;JC=JE

xét tgCDJ và tgEDJ có: CD=DE (cmt)

                                       DJ là cạnh chung

                                      CJ=EJ (cmt)

=>tgCDJ=tgEDJ (c.c.c)

=>gDCJ=gDEJ 

mà gDCJ = gJCO (CJ là tia phân giác của gOCD)

       gJCO=gJEO (cmt)

=>gDEJ = gJEO =>EJ là tia phân giác của gBEO

                                        

7 tháng 4 2017

ủng hộ mk nha mọi người

22 tháng 5 2018

Bạn tự vẽ hình nha

Câu a

Chứng minh : Kẻ OC cắt BD tại E

Xét ΔCAO và ΔEBO có :

ˆA=^OBE (=1v)

AO=BO (gt)

^COA=^BOE (đối đỉnh)

⇒ΔCAO=ΔEBO (cgv - gn )

⇒OC=OE ( hai cạnh tương ứng )

và AC=BE ( hai cạnh tương ứng )

Xét ΔOCD và ΔOED có :

OC=OE (c/m trên )

^COD=^DOE ( = 1v )

OD chung

⇒ΔOCD=ΔOED (cgv - cgv )

⇒CD=DE (hai cạnh tương ứng )

mà DE = BD + BE

và AC = BE ( c/m trên )

⇒CD=AC+BD

Ai bt câu c giúp mk vs

29 tháng 5 2020

ae giúp nó đi chứ

7 tháng 4 2020

ai chơi ngọc rồng onlie ko cho mk xin 1 nick

7 tháng 4 2020

a) Vẽ tia CO cắt tia đối của tia By tại E

Xét tam giác vuông AOC và tam giác vuông BOE có : 

AO = OB ( gt ) 

AOC = BOE ( 2 góc đối đỉnh ) 

\(\implies\)  tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn ) 

\(\implies\) AC = BE ( 2 cạnh tương ứng ) 

Xét tam giác vuông DOC và tam giác vuông DOE có : 

OD chung 

OC = OE ( tam giác vuông AOC = tam giác vuông BOE ) 

\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông ) 

\(\implies\) CD = ED ( 2 cạnh tương ứng ) 

Mà ED = EB + BD 

\(\implies\) ED = AC + BD 

\(\implies\) CD = AC + BD 

b) Xét tam giác DOE vuông tại O có : 

OE2 + OD2 = DE2 ( Theo định lý Py - ta - go ) 

 Xét tam giác BOE vuông tại B có : 

OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * ) 

 Xét tam giác BOD vuông tại B có : 

OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )

Cộng ( * ) với ( ** ) vế với vế ta được : 

OE2 + OD2 = 2. OB2 + EB2 + DB2 

Mà OE2 + OD2 = DE2 ( cmt ) 

\(\implies\) DE2 = 2. OB2 + EB2 + DB2 

                 = 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE ) 

                 = 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE 

                 = 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE 

                 = 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE  

                 = 2. OB2 + DE2 - 2 . BD . BE  

\(\implies\) 2. OB2 - 2 . BD . BE = 0 

\(\implies\) 2. OB2 = 2 . BD . BE

\(\implies\) OB2 = BD . BE 

Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt ) 

\(\implies\) AC . BD = ( AB / 2 )2 

\(\implies\) AC . BD = AB2 / 4