K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

Ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+c}{b+d}=\frac{a+2c}{b+2d}\)(Áp dụng tính chất dãy tỉ số bằng nhau)

\(\Leftrightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)(Nhân chéo)

(Đpcm)

24 tháng 1 2020

Từ \(\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\Leftrightarrow\frac{bk+2dk}{b+2d}=\frac{bk+dk}{b+d}}\)

Xét VT \(\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)

Xét VP \(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\left(đpcm\right)\)

Chúc bạn học tốt !!!

15 tháng 12 2019

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

=> \(\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)

=> \(a\left(c-d\right)+b\left(c-d\right)=c\left(a-b\right)+d\left(a-b\right)\)

=> \(ac-ad+bc-bd = ca-cb+da-db\)

=> \(bc-ad = da-cb\)

=> \(2bc = 2da\)

=> \(bc=da\)

=> \(\frac{a}{b}=\frac{c}{d}\)

15 tháng 12 2019

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

23 tháng 11 2017

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)

\(\Rightarrow\frac{a+2c}{a-2c}=\frac{b+2d}{b-2d}\)

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)

Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)

4 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a = b = c = d

=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)

D = 1 + 1 + 1 + 1 = 4

4 tháng 9 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)\(\frac{a}{b}=\frac{2c}{2d}=\frac{a-2c}{b-2d}\)

\(\Rightarrow\frac{a+c}{b+d}=\frac{a-2c}{b-2d}\left(=\frac{a}{b}\right)\)

26 tháng 12 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).

Có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

18 tháng 7 2018

Ta có :   2a + b + c+ d / a - 1 = a + 2b + c + d / b - 1 = a + b + 2c + d / c - 1 = a + b + c +2d / d - 1

  => a + b + c + d / a =  a + b + c + d / b = a + b + c + d / c = a + b + c + d / d

Xét 2 trường hợp : 

TH1:   a + b + c + d = 0

=> a + b = - ( c + d )   ;   b + c = - ( a + d )   ;   c + d = - ( a + b )

Khi đó M = ( -1 ) . 4 = -4

TH2 :  a + b + c + d  khác 0 

=> a = b = c = d

Khi đó M = 1 . 4 = 4

Vậy M = 4 hoặc M = - 4

31 tháng 10 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có





Do đó 

Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có





Do đó 

Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có






Do đó 

Nên Áp dụng tính chất của dãy tỉ số bằng nhau ta có





Do đó 

Nên 

31 tháng 10 2019

Đặt  \(\frac{a}{b}=\frac{c}{d}=k\) 

\(\Rightarrow a=bk;c=dk\)

Ta có: +) (a+2c) (b+d)= (bk+2.dk) (b+d)

                                   = k.(b+2d) (b+d)    (1)

+) (a+c) (b+2d)= (bk+dk) (b+2d)

                        = k.(b+d) (b+2d)                (2)

Từ (1) và (2), ta có: (a+2c) (b+d)= (a+c) (b+2d)

Học tốt nha^^