Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu tự vẽ hinh nha !
Xét tam giác OAM và tam giác OBM có :
OA = OB (giả thiết)
góc AOM = góc BOM (phân giác) => tam giác OAM = tam giác OBM (c.g.c)
OM là cạnh chung
=> MA = MB (2 cạnh tương ứng)
b) Xét tam giác OAH là tam giác OBH có :
OA = OB (gt)
OH là cạnh chung => tam giác OAH = tam giác OBH (c.g.c)
góc AOM = góc OBM (phân giác ) => OA = OB (2 cạnh tương ứng) (1)
và góc AHO = góc BHO
Vì 2 góc này kề bù và bằng nhau
=> góc AHO = góc BHO = góc AHB / 2 = 180 / 2 = 90 (2)
Từ 1 và 2
=> OM là đường trung trực của AB
c) quá dễ
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
b: Xét ΔOAC và ΔOBD có
\(\widehat{AOC}\) chung
OA=OB
\(\widehat{OAC}=\widehat{OBD}\)
Do đó; ΔOAC=ΔOBD
Suy ra: AC=BD
a: Xét ΔOAM và ΔOBM có
OA=OB
góc AOM=góc BOM
OM chung
Do đó: ΔOAM=ΔOBM
b,c: Ta có: ΔOAM=ΔOBM
nên MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM vuông góc với AB
d Vì N nằm trên đường trung trực của AB
nen NA=NB
a: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOIA=ΔOIB
Suy ra: OA=OB
a) Xét tam giác OMA và tam giác OMB có:
OA = OB.
OM chung.
\(\widehat{AOM}=\widehat{MOB}\)
Suy ra \(\Delta OMA=\Delta OMB\left(c.g.c\right)\).
Suy ra MA = MB (hai cạnh tương ứng).
Chứng minh tương tự ta có \(\Delta OAI=\Delta OBI\) (c.g.c).
Suy ra \(\widehat{AIO}=\widehat{BIO}\) mà \(\widehat{AIO}+\widehat{BIO}=180^o\).
Suy ra \(\widehat{AIO}=\widehat{BIO}=180^o:2=90^o\).