K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

Ta có \(H=\frac{7}{3}+\frac{13}{3^2}+...+\frac{605}{3^{100}}\)

\(\Leftrightarrow3H=7+\frac{13}{3}+...+\frac{605}{3^{99}}\)

\(\Rightarrow2H=7+\frac{6}{3}+\frac{6}{3^2}+...+\frac{6}{3^{99}}-\frac{605}{3^{100}}\)

\(\Leftrightarrow2H=7+6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{605}{3^{100}}\)

Mà \(6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)=3-\frac{1}{3^{99}}\)

\(\Rightarrow2H=7+3-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)

\(\Leftrightarrow2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)

\(\frac{1}{3^{99}}+\frac{605}{3^{100}}>0\)

\(\Rightarrow2H< 10\)

\(\Leftrightarrow H< 5\left(1\right)\)

Ta có \(2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)

\(\frac{1}{3^{97}}+\frac{605}{3^{98}}< 22\)

hay\(\frac{1}{3^{99}}+\frac{605}{3^{98}}< \frac{22}{9}\)

\(\Rightarrow2H>10-\frac{22}{9}=\frac{68}{9}=2\cdot\left(3+\frac{7}{9}\right)\)

\(\Rightarrow H>3+\frac{7}{9}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrowđpcm\)

 

Sai r

 

19 tháng 2 2019

Ta có \(I=\frac{11}{3}+\frac{17}{3^2}+...+\frac{605}{3^{100}}\left(1\right)\)

\(\Leftrightarrow3I=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\left(2\right)\)

Lấy \(\left(2\right)trừ\left(1\right)\)ta có

\(3I-I=11+\frac{6}{3}+\frac{6}{3^2}+...+\frac{6}{3^{99}}-\frac{605}{3^{100}}\)

\(\Leftrightarrow2I=11+6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{605}{3^{100}}\)

Xét \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\left(3\right)\)

\(\Leftrightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^{99}}\left(4\right)\)

Lấy\(\left(4\right)-\left(3\right)\)ta có

\(2A=1-\frac{1}{3^{100}}\)

\(\Leftrightarrow6A=3-\frac{1}{3^{99}}\)

Khi đó \(2I=11+3-\frac{1}{3^{99}}-\frac{605}{3^{100}}\)

\(\Leftrightarrow2I=14-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)

\(\frac{1}{3^{99}}+\frac{605}{3^{100}}>0\)

\(\Rightarrow2I< 14\)

\(\Leftrightarrow I< 7\left(đpcm\right)\)

23 tháng 6 2016

bạnh ơi nếu rảnh thì lm toán nha 

25 tháng 4 2017

\(-\frac{3}{5}.\frac{5}{7}+-\frac{3}{5}.\frac{3}{7}+-\frac{3}{5}.\frac{6}{7}=-\frac{3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)=-\frac{3}{5}.2=-\frac{6}{5}\)

\(\frac{1}{3}.\frac{4}{5}+\frac{1}{3}.\frac{6}{5}-\frac{4}{3}=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}\right)-\frac{4}{3}=\frac{1}{3}.2-\frac{4}{3}=\frac{2}{3}-\frac{4}{3}=-\frac{2}{3}\)

\(\frac{4}{19}.\frac{-3}{7}+-\frac{3}{7}.\frac{15}{19}+\frac{5}{7}=-\frac{3}{7}\left(\frac{4}{19}+\frac{15}{19}\right)+\frac{5}{7}=-\frac{3}{7}+\frac{5}{7}=\frac{2}{7}\)

\(\frac{5}{9}.\frac{7}{13}+\frac{5}{9}.\frac{9}{13}-\frac{5}{9}.\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\)

25 tháng 4 2017

\(a,6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)=6\frac{4}{5}-1\frac{2}{3}-3\frac{4}{5}=6\frac{4}{5}-3\frac{4}{5}-1\frac{2}{3}=3-1\frac{2}{3}=\frac{4}{3}\)

\(b,6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)=6\frac{5}{7}-2\frac{5}{7}-1\frac{3}{4}=\frac{9}{4}\)

\(c,7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)=7\frac{5}{9}-3\frac{5}{9}-2\frac{3}{4}=4-2\frac{3}{4}=\frac{5}{4}\)

mk nghĩ là phần d như thế này cơ \(7\frac{5}{11}\left(2\frac{3}{7}+3\frac{5}{11}\right)\)

\(7\frac{5}{11}-\left(2\frac{3}{7}+3\frac{5}{11}\right)=7\frac{5}{11}-3\frac{5}{11}-2\frac{3}{7}=4-2\frac{3}{7}=\frac{11}{7}\)

3 tháng 5 2019

Giúp Mik ik mai nộp oy

27 tháng 3 2019

\(a.\frac{108}{119}.\frac{107}{211}+\frac{108}{119}.\frac{104}{211}=\frac{108}{119}.\left(\frac{107}{211}+\frac{104}{211}\right)=\frac{108}{119}.1=108\)

27 tháng 7 2019

a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)

\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)

Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)

\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)

\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)

\(\Rightarrow F< \frac{3}{2}\)

\(\Rightarrow2A< 4+\frac{3}{2}\)

\(\Rightarrow2A< \frac{11}{2}\)

\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)

27 tháng 7 2019

2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)

\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)

\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)

\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)

Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)

\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)

\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )

\(\Rightarrow2D< 6\)

\(\Rightarrow D< 3\)

\(\Rightarrow2B< 11+3\)

\(\Rightarrow2B< 14\)

\(\Rightarrow B< 7\left(đpcm\right)\)

9 tháng 4 2018

a) 2/7+-3/8+11/7+1/3+1/7+5/-8

=(2/7+11/7+1/7)+(3/8+-5/8)+1/3

=2+2+1/3

=4+1/3

=13/3

b) -3/8+12/25+5/-8+2/-5+13/25

=(-3/8+-5/8)+(12/25+13/25)+-2/5

=-1+1+-2/5

=0+-2/5

=-2/5

c)7/8+1/8*3/8+1/8*5/8

=7/8+1/8*(3/8+5/8)

=7/8+1/8*1

=7/8+1/8

=1

9 tháng 4 2018

a) 2/7+-3/8+11/7+1/3+1/7+5/-8

=(2/7+11/7+1/7)+(3/8+-5/8)+1/3

=2+2+1/3

=4+1/3

=13/3

b) -3/8+12/25+5/-8+2/-5+13/25

=(-3/8+-5/8)+(12/25+13/25)+-2/5

=-1+1+-2/5

=0+-2/5

=-2/5

c)7/8+1/8*3/8+1/8*5/8

=7/8+1/8*(3/8+5/8)

=7/8+1/8*1

=7/8+1/8

=1