Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(H=\frac{7}{3}+\frac{13}{3^2}+...+\frac{605}{3^{100}}\)
\(\Leftrightarrow3H=7+\frac{13}{3}+...+\frac{605}{3^{99}}\)
\(\Rightarrow2H=7+\frac{6}{3}+\frac{6}{3^2}+...+\frac{6}{3^{99}}-\frac{605}{3^{100}}\)
\(\Leftrightarrow2H=7+6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{605}{3^{100}}\)
Mà \(6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)=3-\frac{1}{3^{99}}\)
\(\Rightarrow2H=7+3-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
\(\Leftrightarrow2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
Vì\(\frac{1}{3^{99}}+\frac{605}{3^{100}}>0\)
\(\Rightarrow2H< 10\)
\(\Leftrightarrow H< 5\left(1\right)\)
Ta có \(2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
Mà\(\frac{1}{3^{97}}+\frac{605}{3^{98}}< 22\)
hay\(\frac{1}{3^{99}}+\frac{605}{3^{98}}< \frac{22}{9}\)
\(\Rightarrow2H>10-\frac{22}{9}=\frac{68}{9}=2\cdot\left(3+\frac{7}{9}\right)\)
\(\Rightarrow H>3+\frac{7}{9}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrowđpcm\)
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)
\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)
\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)
Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)
\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)
\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)
\(\Rightarrow F< \frac{3}{2}\)
\(\Rightarrow2A< 4+\frac{3}{2}\)
\(\Rightarrow2A< \frac{11}{2}\)
\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)
2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)
\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)
\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)
\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)
Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)
\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)
\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )
\(\Rightarrow2D< 6\)
\(\Rightarrow D< 3\)
\(\Rightarrow2B< 11+3\)
\(\Rightarrow2B< 14\)
\(\Rightarrow B< 7\left(đpcm\right)\)
\(-\frac{3}{5}.\frac{5}{7}+-\frac{3}{5}.\frac{3}{7}+-\frac{3}{5}.\frac{6}{7}=-\frac{3}{5}\left(\frac{5}{7}+\frac{3}{7}+\frac{6}{7}\right)=-\frac{3}{5}.2=-\frac{6}{5}\)
\(\frac{1}{3}.\frac{4}{5}+\frac{1}{3}.\frac{6}{5}-\frac{4}{3}=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}\right)-\frac{4}{3}=\frac{1}{3}.2-\frac{4}{3}=\frac{2}{3}-\frac{4}{3}=-\frac{2}{3}\)
\(\frac{4}{19}.\frac{-3}{7}+-\frac{3}{7}.\frac{15}{19}+\frac{5}{7}=-\frac{3}{7}\left(\frac{4}{19}+\frac{15}{19}\right)+\frac{5}{7}=-\frac{3}{7}+\frac{5}{7}=\frac{2}{7}\)
\(\frac{5}{9}.\frac{7}{13}+\frac{5}{9}.\frac{9}{13}-\frac{5}{9}.\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\)
\(a,6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)=6\frac{4}{5}-1\frac{2}{3}-3\frac{4}{5}=6\frac{4}{5}-3\frac{4}{5}-1\frac{2}{3}=3-1\frac{2}{3}=\frac{4}{3}\)
\(b,6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)=6\frac{5}{7}-2\frac{5}{7}-1\frac{3}{4}=\frac{9}{4}\)
\(c,7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)=7\frac{5}{9}-3\frac{5}{9}-2\frac{3}{4}=4-2\frac{3}{4}=\frac{5}{4}\)
mk nghĩ là phần d như thế này cơ \(7\frac{5}{11}\left(2\frac{3}{7}+3\frac{5}{11}\right)\)
\(7\frac{5}{11}-\left(2\frac{3}{7}+3\frac{5}{11}\right)=7\frac{5}{11}-3\frac{5}{11}-2\frac{3}{7}=4-2\frac{3}{7}=\frac{11}{7}\)