K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2022

bạn ghi đúng đề ko v ?

NV
20 tháng 1 2021

\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)

\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

5 tháng 2 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)

\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)

5 tháng 2 2020

nhầm sửa x = y = z = 1 nha

19 tháng 7 2020

\(T=21\left(x+\frac{1}{y}\right)+3\left(y+\frac{1}{x}\right)\)

\(=3\left(\frac{1}{x}+\frac{x}{9}\right)+21\left(\frac{1}{y}+\frac{y}{9}\right)+\frac{62x}{9}+\frac{2y}{3}\)

\(\ge6\sqrt{\frac{1}{x}\cdot\frac{x}{9}}+42\sqrt{\frac{1}{y}\cdot\frac{y}{9}}+\frac{62\cdot3}{9}+\frac{2\cdot3}{9}\)

\(=\frac{112}{3}\)

Đẳng thức xảy ra tại x=3;y=3

19 tháng 7 2016

Đặt  \(A=\frac{1}{x}+\frac{2}{y}\)  

\(\Rightarrow\) \(3A=\left(\frac{1}{x}+\frac{2}{y}\right)\left(x+2y\right)\)  (do  \(x+2y=3\)  )

nên  \(3A=2\left(\frac{x}{y}+\frac{y}{x}\right)+5\)

Khi đó, áp dụng bất đẳng thức  \(AM-GM\)  đối với bộ số không âm gồm \(\left(\frac{x}{y};\frac{y}{x}\right)\)  , ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

Do đó,  \(3A\ge2.2+5=9\)

Hay nói cách khác,  \(A\ge3\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow}\)  \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Vậy,  \(A_{min}=3\)  \(\Leftrightarrow\)  \(x=y=1\)

19 tháng 7 2016

dùng cô si ( AM - GM ) thêm bớt nhanh hơn .

dự đoán điểm rơi  x = y = 1 

                       Gải : \(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\left(1\right).\)

                                \(\frac{2}{y}+2y\ge2\sqrt{\frac{2}{y}.2y}=4\left(2\right).\)

cống vế với vế của (1) và (2) ta được : \(\frac{1}{x}+\frac{2}{y}+3\ge6\) ( do x + 2y = 3 ) 

                                                                  => \(\frac{1}{x}+\frac{2}{y}\ge3\)dấu "=" xẩy ra khi x = y = 1 

22 tháng 12 2017

Áp dụng bđt AM - GM ta có :

\(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\)

\(\frac{2}{y}+2y=2\left(\frac{1}{y}+y\right)\ge2.2\sqrt{\frac{1}{y}.y}=4\)

Cộng vế với vế ta được : \(\frac{1}{x}+\frac{2}{y}+x+2y\ge6\)

\(\Leftrightarrow\frac{1}{x}+\frac{2}{y}+3\ge6\Rightarrow\frac{1}{x}+\frac{2}{y}\ge3\) 

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

10 tháng 5 2019

Ta có:\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\ge\frac{9}{x+2y}=\frac{9}{3}=3\left(đpcm\right)\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow x=y=1}\)

:))

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)