Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(f\left(x\right)=\frac{100^x}{100^x+10}\)
\(\Rightarrow\left\{\begin{matrix}f\left(a\right)=\frac{100^a}{100^a+10}\\f\left(b\right)=\frac{100^b}{100^b+10}\end{matrix}\right.\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=\frac{100^a}{100^a+10}+\frac{100^b}{100^b+10}\)
\(=\frac{100^a\left(100^b+10\right)+100^b\left(100^a+10\right)}{100^b\left(100^a+10\right)+10\left(100^a+10\right)}\)
\(=\frac{100^a.100^b+100^a.10+100^b,100^a+100^b.10}{100^b.100^a+100^b.10+100^a.10+100}\)
\(=\frac{100^{a+b}+100^a.10+100^{b+a}+100^b.10}{100^{b+a}+100^b.10+100^a.10+100}\)
Thế \(a+b=1\)
\(\Rightarrow\frac{100+100^a.10+100+100^b.10}{100+100^b.10+100^a.10+100}=1\)
\(\Leftrightarrow f\left(a\right)+f\left(b\right)=1\)
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
tham khảo thôi nhé ko giống y sì đâu
https://olm.vn/hoi-dap/detail/213882782299.html
Ta có: f(1) = a.12 + b.1 + c = a + b + c
f(-1) = a.(-1)2 + b.(-1) + c = a - b + c
=> f(1) = f(-1) => a + b + c = a - b + c
=> a + b = a - b => a + b - a + b = 0
=> 2b = 0 => b = 0
Khi đó, ta có: f(-x) = a.(-x)2 + b.(-x) + c = ax2 - 0 . x + c = ax2 + c
f(x) = ax2 + bx + c = ax2 + 0.x + c = ax2 + c
=> f(-x) = f(x)
Ta có: f(1) = a.12 + b.1 + c = a + b + c
f(-1) = a.(-1)2 + b.(-1) + c = a - b + c
f(1) = f(-1) <=> a + b + c = a - b + c <=> b = -b <=> b = 0
=> f(x) = ax2 + c luôn thỏa mãn điều kiện f(-x) = f(x) với mọi x
Ta có:
\(f\left(a\right)+f\left(b\right)=f\left(a\right)+f\left(1-a\right)\\ =\dfrac{100^a}{100^a+10}+\dfrac{100^{1-a}}{100^{1-a}+10}\\ =\dfrac{100^a}{100^a+10}+\dfrac{\dfrac{100}{100^a}}{\dfrac{100}{100^a}+10}\\ =\dfrac{100^a}{100^a+10}+\dfrac{100}{100^a}.\dfrac{100^a}{100+10.100^a}\\ =\dfrac{100^a}{100^a+10}+\dfrac{10}{10+100^a}\\ =\dfrac{100^a+10}{10+100^a}=1\left(đpcm\right)\)