K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

* Thay x = 1,5, y = 2 vào từng phương trình của hệ:

10.1,5 – 3.2 = 15 – 6 = 9

-5.1,5 + 1,5.2 = -7,5 + 3 = -4,5

Vậy (1,5; 2) là nghiệm của hệ phương trình  10 x - 3 y = 9 - 5 x + 1 , 5 y = - 4 , 5

* Thay x = 3, y = 7 vào từng phương trình của hệ:

10.3 – 3.7 = 30 – 21 = 9

-5.3 + 1,5.7 = -15 + 10,5 = -4,5

Vậy (3; 7) là nghiệm của hệ phương trình  10 x - 3 y = 9 - 5 x + 1 , 5 y = - 4 , 5

=>10x+15y=5m và -10x+2y=-2

=>17y=5m-2 và -5x+y=-1

=>y=5/17m-2/17 và 5x-y=1

=>y=5/17m-2/17 và 5x=1+y=5/17m+15/17

=>y=5/17m-2/17 và x=1/17m+5/17

x>0; y>0

=>5m-2>0 và m+5>0

=>m>2/5

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

20 tháng 11 2023

a: Khi m=2 thì hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}2x+3y=-4\\x-2y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+3y=-4\\2x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=-14\\x-2y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-2\\x=2y+5=-4+5=1\end{matrix}\right.\)

b: Để hệ phương trình không có nghiệm thì \(\dfrac{m}{1}=\dfrac{3}{-2}< >-\dfrac{4}{5}\)

=>\(\dfrac{m}{1}=\dfrac{3}{-2}\)

=>\(m=\dfrac{3}{-2}=-\dfrac{3}{2}\)

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

13 tháng 1 2021

giúp mình nhé

10 tháng 3 2016

Nhân cả hai vế của phương trình thứ hai với 2, ta được m(2x)+6y=8  (1). Từ phương trình đầu ta có 2x=my-3. Thế vào phương trình (1) ta thu được m(my-3)+6y=8 hay \(\left(m^2+6\right)y=3m+8\Leftrightarrow y=\frac{3m+8}{m^2+6}.\) Khi đó \(2x=my-3=\frac{m\left(3m+8\right)}{m^2+6}-3\to x=\frac{4m}{\left(m^2+6\right)}\)  Vậy hệ có nghiệm duy nhất với mọi m.

1 tháng 8 2023

Kiến thức cần nhớ: \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) hệ pt vô nghiệm ⇔\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\)

                                              hệ pt có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)

 

\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\) (1) ta có: a = 1; b =  -3; c = m và a' = 2; b' = - 6; c' = 8

Hệ (1) vô nghiệm ⇔ \(\dfrac{1}{2}\) = \(\dfrac{-3}{-6}\)  \(\ne\) \(\dfrac{m}{8}\)

                            ⇔  \(\dfrac{1}{2}\)            \(\ne\) \(\dfrac{m}{8}\)

                           ⇔   m \(\ne\) 4

Hệ (1) có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{1}{2}=\dfrac{-3}{-6}=\dfrac{m}{8}\) ⇔ \(\dfrac{1}{2}\) = \(\dfrac{m}{8}\) ⇔ m = 8\(\times\)\(\dfrac{1}{2}\) = 4

Kết luận:

+ hệ phương trình đã cho vô nghiệm khi m \(\ne\) 4 và có vô số nghiệm khi m = 4

1 tháng 8 2023

\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\)

\(D=-6+6=0\)

\(D_x=-6m+24\)

\(D_y=8-2m\)

Để hệ phương trình vô nghiệm

\(\Leftrightarrow D_x\ne0\cap D_y\ne0\left(D=0\right)\)

\(\Leftrightarrow-6m+24\ne0\cap8-2m\ne0\)

\(\Leftrightarrow m\ne4\)

Để hệ phương trình vô số nghiệm

\(\Leftrightarrow D=D_x=D_y=0\)

\(\Leftrightarrow m=4\) ( vì D luôn bằng 0)