Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Vì BI vuông góc với AC tại I, nên I thuộc AC.
Vì DK vuông góc với AC tại K, nên K thuộc AC.
Vì O là giao điểm của AC và BD nên O thuộc AC.
Suy ra I, O, K là các điểm thuộc AC; từ đó ba điểm I, O, K thẳng hàng
a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)
b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)
c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.
Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.
Xét tam giác ADM và tam giác CEM có:
ADM = CEM (= 90 độ)
AM = MC (M là trung điểm của AC)
AMD = CME (đối đỉnh)
=> tam giác ADM = tam giác CEM
=> DM = EM (2 cạnh tương ứng)
=> M là trung điểm của DE
b) ta có:
BD + BE = BD + BD + DE
mà ED = DM+EM và DM = EM
=> BD + BE = 2BD + 2DM = 2BM
trong tam giác ABM có A là góc vuông
=> AB^2 + AM^2 = BM^2 (định lí Pytago)
=> AB<BM
=> 2AB < 2BM
=> 2AB < BD+BE
a: AC=căn 10^2-5^2=5*căn 3(cm)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
c: Sửa đề: ΔBEF=ΔBAC
Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc FBE chung
=>ΔBEF=ΔBAC