K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

Vì ABCD là hình bình hành nên ME // DE và EN // AB.

+ ME // DC nên ΔAME ~ ΔADC, tỉ số đồng dạng  A E A C = 1 3

+ Vì ABCD là hình bình hành nên góc B = D; AD = BC; AB = DC

=> ΔCBA ~ ΔADC

ΔCBA ~ ΔADC, tỉ số đồng dạng bằng 1

+ EN // AB nên ΔCNE ~ ΔADC, do đó ΔCNE ~ ΔADC, tỉ số đồng dạng  C E A C = 2 3

Vậy cả (I), (II), (III) đều đúng.

Đáp án: C

a: Xét ΔAME và ΔADC có

\(\widehat{AME}=\widehat{ADC}\)(hai góc đồng vị, ME//DC)

\(\widehat{MAE}\) chung

Do đó: ΔAME đồng dạng với ΔADC

=>\(\dfrac{AM}{AD}=\dfrac{ME}{DC}=\dfrac{AE}{AC}=\dfrac{1}{3}\)

Xét ΔCEN và ΔACD có

\(\widehat{CEN}=\widehat{ACD}\)(hai góc so le trong, EN//CD)

\(\widehat{ECN}=\widehat{CAD}\)(hai góc so le trong, CN//AD)

Do đó: ΔCEN đồng dạng với ΔACD

=>\(\dfrac{CE}{AC}=\dfrac{EN}{CD}=\dfrac{CN}{AD}=\dfrac{2}{3}\)

b: E là trung điểm của MN

=>EM=EN

Xét ΔEAM và ΔECN có

\(\widehat{EAM}=\widehat{ECN}\)(hai góc so le trong, AM//CN)

\(\widehat{AEM}=\widehat{CEN}\)(hai góc đối đỉnh)

Do đó: ΔEAM đồng dạng với ΔECN

=>\(\dfrac{EA}{EC}=\dfrac{EM}{EN}=1\)

=>E là trung điểm của AC

22 tháng 3 2021

A B C D E M N

a, sửa tìm các tam giác đồng dạng nhé 

Xét tam giác AME và tam giác ADC ta có : ME // DC 

\(\frac{AM}{MD}=\frac{AE}{CE}\)( theo định lí Ta lét ) 

^A chung

Vậy tam giác AME ~ tam giác ADC ( c.c.c )

\(\Rightarrow\frac{ME}{DC}=\frac{AE}{AC}\)( tỉ số đồng dạng ) 

22 tháng 3 2021

b, Xét tam giác ADC ta có : ME // DC 

\(\Rightarrow\frac{AM}{AD}=\frac{AE}{AC}=\frac{ME}{DC}\)( theo hệ quả Ta lét )

Xét tam giác ACB ta có : EN // AB 

\(\Rightarrow\frac{CE}{AC}=\frac{CN}{BC}=\frac{EN}{AB}\)( theo hệ quả Ta lét )

giả sử : E là trung điểm MN khi  \(\frac{ME}{DC}=\frac{NE}{AB}\)

mà \(DC=AB\)( do ABCD là hình bình hành )

Suy ra : \(ME=NE\)hay E là trung điểm MN 

31 tháng 8 2017

a) Đ b)S c) Đ d) S

18 tháng 2 2019

Vì ΔDHE ~ ΔABC với tỉ số đồng dạng 2 3  nên tỉ số hai đường cao tương ứng của ΔDHE và ΔABC là 2 3  và tỉ số diện tích của ΔDHE và ΔABC là  ( 2 3 ) 2 = 4 9

Do đó (I) và (IV) đúng, (II) và (III) sai.

Đáp án: A

22 tháng 11 2019

Vì AB // CD, áp dụng định lý Talet, ta có:  O A O C = A B C D = O B O D

=> O A O C = A B C D  ó OA.OD = OB.OC

=> Khẳng định (I) O A O C = A B C D  đúng, khẳng định (II) O B O C = B C A D  sai, khẳng định (III) OA.OD = OB.OC đúng

Vậy có 2 khẳng định đúng.

Đáp án: B

CÁC BẠN GIÚP MÌNH VỚI 📛 MÌNH CẢM ƠN NHIỀU Ạ (NHỚ GIẢI CHI TIẾT Ạ ❤)Bài 1. Cho hình thang ABCD ( AB // CD), lấy P € AC. Qua P kẻ đường thẳng song song với AB cắt AD, BC tại M, N. Biết AM =10cm, MD = 20cm, BN = 11cm, PC = 35cm. Tính AP, NC?Bài 2. Cho ABC , M € AB, N € AC. Biết AM =3cm; BM = 2cm, AN = 7,5cm; NC = 5cma)CM: MN // BCb)Gọi I là trung điểm của BC, AI cắt MN tại K. CM: K là trung điểm của MNc)*(Dành cho hs...
Đọc tiếp

CÁC BẠN GIÚP MÌNH VỚI 📛 MÌNH CẢM ƠN NHIỀU Ạ (NHỚ GIẢI CHI TIẾT Ạ ❤)

Bài 1. Cho hình thang ABCD ( AB // CD), lấy P € AC. Qua P kẻ đường thẳng song song với AB cắt AD, BC tại M, N. Biết AM =10cm, MD = 20cm, BN = 11cm, PC = 35cm. Tính AP, NC?

Bài 2. Cho ABC , M € AB, N € AC. Biết AM =3cm; BM = 2cm, AN = 7,5cm; NC = 5cm

a)CM: MN // BC

b)Gọi I là trung điểm của BC, AI cắt MN tại K. 

CM: K là trung điểm của MN

c)*(Dành cho hs KG)Gọi O là giao điểm BN và CM.

 CMR: 3 điểm A, O, I thẳng hàng

Bài 3. Cho hình bình hành ABCD. Vẽ tia Ax cắt đường chéo BD ở I, cắt tia BC ở J và cắt tia DC ở K

a) Tỉ số ID/IB bằng những tỉ số nào?   CM: IA^2 =IJ . IK

b)CM: 1/JA + 1/KA = 1/IA

Bài 4. Cho tứ giác ABCD. Qua E trên AD kẻ đường thẳng song song với DC và cắt AC ở G. Qua G kẻ đường thẳng song song với CB và cắt AB ở H. 

a)Tỉ số GA/GC bằng những tỉ số nào?                          b)CM: HE // BD

Bài 5. Cho ABC. Trên BC lấy D sao cho . Đường thẳng qua D song song với AB cắt AC tại E, đường thẳng qua D song song với AC cắt AB tại F.

a)So sánh tỉ số   và 

b)Gọi M là trung điểm của AC. CM: EF // BM

c)*Giả sử DB/DC = k  . Tìm k để EF // BC

1
10 tháng 2 2020

Bài 5: (bị thiếu ạ)

a) So sánh tỉ số FA/AB và AE/AC

Câu 1Cho biết a < b. Trong các khẳng định sau, khẳng định sai là?(I) a - 1 < b                   (II) a - 1 < b – 1                   (III) a + 2 < b + 1a) (II) và (I)b) (I) và  (III)c) (II)d) ( II ) và ( III )aCâu 2Số x2  không âm được viết như thế nào ? a) x2  <  0b) x2  >  0c) x2   ≤  0d) x2  ≥  0 Câu 3Cho biết a < b. Trong các khẳng định sau, số khẳng định đúng là? (I) a - 1 < b - 1  (II) a - 1 < b  (III) a + 2 < b + 1 a) ( I ) b) ( II ) c) ( III )d) (...
Đọc tiếp

Câu 1

Cho biết a < b. Trong các khẳng định sau, khẳng định sai là?

(I) a - 1 < b                   (II) a - 1 < b – 1                   (III) a + 2 < b + 1

a) (II) và (I)

b) (I) và  (III)

c) (II)

d) ( II ) và ( III )a

Câu 2

Số x2  không âm được viết như thế nào ? 

a) x2  <  0

b) x2  >  0

c) x2   ≤  0

d) x2  ≥  0 

Câu 3

Cho biết a < b. Trong các khẳng định sau, số khẳng định đúng là?

 (I) a - 1 < b - 1  (II) a - 1 < b  (III) a + 2 < b + 1

 a) ( I ) 

b) ( II ) 

c) ( III )

d) ( I ) và ( II )

Câu 4

Cho m bất kỳ, chọn câu đúng?

 

a) m - 3 > m - 4

b) m - 3 < m - 4

c) m - 3 = m - 4

Câu 5

Cho x - 3 ≤ y - 3, so sánh x và y. Chọn đáp án đúng nhất?

a) x < y

b) x = y

c) x > y

d) x ≤ y

Câu 6

Cho a + 8 < b. So sánh a - 7 và b - 15?

 

a) a - 7 < b - 15   

b) a - 7 > b - 15 

c) a - 7 ≥ b - 15

d) a - 7 ≤ b - 15

Câu 7

Biết rằng m > n với m, n bất kỳ, chọn câu đúng?

            

 

          

 

a) m - 3 > n - 3

b) m - 3 < n - 3

c) m - 3 = n - 3 

d) m - n < 0

1

Câu 1:B

Câu 2: D

Câu 3: D
Câu 4: A

Câu 5: D

Câu 6: A

Câu 7: A

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0