K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

Chọn B

Số cạnh bên của hình chóp bằng số cạnh đáy.

Suy ra số cạnh bên của hình chóp là:  20 2 = 10   cạnh.

Vậy hình chóp có 10 mặt bên và 1 mặt đáy.

23 tháng 11 2018

Chọn D.

Gọi số mặt của hình chóp là  n

=>  số mặt bên của hình chóp là  n-1. Suy ra số cạnh của đa giác đáy hình chóp có n-1 cạnh.

Vậy số cạnh bên của hình chóp là 20-(n-1)=21-n 

Mặt khác số cạnh bên của hình chóp bằng số mặt bên của hình chóp nên ta có

=> n-1=21-n=> n=11

NV
20 tháng 7 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)

\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên  và đáy hay \(\widehat{SMO}=60^0\)

\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
31 tháng 1 2019

25 tháng 11 2016

Gọi \(I\) là tâm của đáy \(ABCD\) (giao điểm của \(AC\)\(BD\))

a) Vì đây là hính chóp đều nên có ngay \(SI\) là đường cao kẻ từ S

\(SI=\sqrt{SA^2-AI^2}=\sqrt{SA^2-\frac{AB^2}{2}}=a\sqrt{2}\)

\(V_{S.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{4a^3\sqrt{2}}{3}\)

b) Thấy ngay \(IA=IB=IC=ID=IS=a\sqrt{2}\)

suy ra tâm mc ngoại tiếp là \(I\)\(R=a\sqrt{2}\)

c) bạn dùng công thức sau để tính bán kính mặt cầu nội tiếp

\(r=\frac{3V_{S.ABCD}}{S_{ABCD}+4S_{SAB}}=\frac{\frac{4a^3\sqrt{2}}{3}}{4a^2+4.\frac{a^2\sqrt{3}}{2}}=\frac{4\sqrt{2}-2\sqrt{6}}{3}.a\)

 

24 tháng 7 2017

Đáp án C