Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.
Gọi I = AC ∩ BD, J = AC' ∩ SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.
Suy ra
Do đó dễ thấy
Phương pháp
+ Xác định góc giữa đường thẳng d và mặt phẳng (P) là góc giữa đường thẳng d và đường thẳng d' với d' là hình chiếu của d trên mặt phẳng (P).
+ Thể tích hình chóp có chiều cao h và diện tích đáy S là V = 1 3 h S
Cách giải:
+ Ta có SA ⊥ (ABCD) => AB là hình chiếu của
SB lên mặt phẳng (ABCD) . Suy ra góc giữa SB và đáy là góc ∠ SBA = 600.
+ Xét tam giác vuông SAB có:
+ Diện tích đáy
+ Thể tích khối chóp là
Chọn C.
S ∆ A B ' C ' = 1 2 B ' C ' . A B ' = 1 2 . c 2 a 2 + c 2 . b a 2 + b 2 + c 2 . c a a 2 + c 2
Chọn D
Ta có
Gọi H là trung điểm AB thì ,
kẻ , ta có là góc giữa (SBD) và (ABCD), do đó = 600
Gọi AM là đường cao của tam giác vuông ABD. Khi đó, ta có:
Chọn A.
Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.
Chọn A