Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VABCA'B'C' = SABC.h
Diện tích của tam giác ABC là: 72 : 9 = 8 (cm2)
SABC = \(\dfrac{1}{2}\)AB.AC = \(\dfrac{1}{2}\)AB2 = 8 ⇒ AB2 = 8.2 = 16
⇒ AB = AC = \(\sqrt{16}\) = 4 (cm)
Vậy độ dài cạnh đáy AB dài 4cm
Hình lăng trụ đứng tạo lập được là:
Độ dài 2 cạnh góc vuông của đáy là: 10 cm và 15 cm
Chiều cao của lăng trụ là: 16 cm
Diện tích xung quanh lăng trụ là :
\(\left(10+2+2.5\right).5=110\left(m^2\right)\)
Diện tích toàn phần lăng trụ là :
\(110+2.\left(10+2\right).3.\dfrac{1}{2}=146\left(m^2\right)\)
Đáp số...
a)
Chu vi đáy hình lăng trụ đứng đó là:
4+5+6=15 (cm)
Diện tích xung quanh hình lăng trụ đứng đó là:
Sxq = 15.10 = 150 (cm2 )
b)
Chu vi đáy là: 8+18+13+13 = 52 (cm)
Diện tích đáy là: Sđáy = (8+18).12:2 = 156 (cm2)
Diện tích toàn phần của lăng trụ đó là:
Stp = Sxq + 2. Sđáy = 52. 20 +2. 156 = 1352 (cm2)
Gọi chiều cao h và cạnh đáy của hình lăng trụ đứng là a, ta có: Diện tích xung quanh của hình lăng trụ đứng là 120cm2 => Chu vi đáy của hình lăng trụ đứng là P = 120 : h Vì đáy của hình lăng trụ là tam giác đều nên có thể tính diện tích đáy bằng công thức: S = (a2 * √3) / 4 Vậy diện tích xung quanh của hình lăng trụ đều bằng: 120 = P * h = (a * √3) / 4 * h => a = 8√5 và h = 15√3 Vậy chiều cao của hình lăng trụ đứng đó là 15√3, độ dài cạnh đáy của hình lăng trụ là 8√5.
S xq=120cm2
=>h*3a=120cm2
=>h*a=40cm2
=>\(\left(h,a\right)\in\left\{\left(1;40\right);\left(2;20\right);\left(4;10\right);\left(5;8\right);\left(8;5\right);\left(10;4\right);\left(20;2\right);\left(40;1\right)\right\}\)