K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chịu thui , k mình đi cho tròn 5 cái

3 tháng 6 2016

2/5 x 1/X + 1/X x 2 = 0,1

1/X x ( 2/5 + 2 ) = 0,1

1/X x 12 / 5 = 0,1

1/X             = 0,1 :12/5 = 1/10 : 12/5

1/X             = 1/24

Vậy X = 24

12 tháng 8 2017

 may người do tra loi

the lop 5 sao hiu 
ta co: s tam giac

CDA=1/2 s tam giac CAB

(chung chieu cao ha tu c,

day AD=1/2AB) 
=>s tam giac CAD

=90/2=45m vuong 
Mat khac ta co:s tam giac

DAE=2/3 s tam giac DAC

(chung chieu cao ha tu d, day AE=2/3AC) 
=>s tam giac AED

=2/3*45=30m vuong

Kẻ MK vuông góc AC

\(S_{AME}=\dfrac{1}{2}\cdot MK\cdot AE\)

\(S_{MEC}=\dfrac{1}{2}\cdot MK\cdot EC\)

mà AE=1/4*EC

nên \(S_{AME}=\dfrac{1}{4}\cdot S_{MEC}\)

=>\(S_{MEC}=80\left(cm^2\right)\)

15 tháng 6 2023

loading...

SADE = 2\(\times\)SAGE ( vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy DE và DE = 2\(\times\) GE )

⇒ SADE = 36 \(\times\) 2 = 72 (cm2)

SADE = \(\dfrac{3}{4}\)\(\times\)SADC (vì hai tam giác có chung chiều cao hạ từ Đỉnh D xuống đáy AC và AE = \(\dfrac{3}{4}\)AC)

⇒ SACD = 72 : \(\dfrac{3}{4}\) = 96 (cm2)

DC = BC - BD = BC - \(\dfrac{1}{5}\)BC = \(\dfrac{4}{5}\)BC

SADC = \(\dfrac{4}{5}\)SABC  (vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và DC = \(\dfrac{4}{5}\)BC)

⇒ SABC = 96 : \(\dfrac{4}{5}\) = 120 (cm2)

Tỉ số phần trăm diện tích tam giác ADE và diện tích tam giác ABC là:

       72 : 120 = 0,6

       0,6 = 60%

Đáp số: 60% 

 

 

30 tháng 7 2020

Bài này hơi khó nên không chắc nhé bạn ==*

A D B M H N C E G

Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật

Suy ra: AH = DE ( tính chất hình chữ nhật )

Tam giác ABC vuông tại A và có AH là đường cao

Theo hệ thức giữa đường cao và hình chiếu ta có:

AH2 = HB . HC = 4 . 9 = 36 => AH = 6 ( cm )

Vậy DE = 6 ( cm )

b. *Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Ta có : \(\widehat{GDH}=\widehat{GHD}\left(1\right)\)

           \(\widehat{GDH}+\widehat{MDH}=90^o\left(2\right)\)

           \(\widehat{GHD}+\widehat{MHD}=90^o\left(3\right)\)

Từ (1) (2) và (3) , suy ra : \(\widehat{MDH}=\widehat{MHD}\left(4\right)\)

\(\Rightarrow\Delta MDH\)cân tại M \(\Rightarrow MD=MH\left(5\right)\)

Ta lại có : \(\widehat{MDH}+\widehat{MDB}=90^o\left(6\right)\)

               \(\widehat{MBD}+\widehat{MHD}=90^o(\Delta BHD\)vuông tại D ) ( 7 )

Từ (4) (6) và (7) , suy ra : \(\widehat{MDB}=\widehat{MBD}\)

\(\Rightarrow\Delta MDH\)cân tại M \(\Rightarrow MB=MD\left(8\right)\)

Từ (5) và (8) , suy ra : \(MB=MH\)hay M là trung điểm của BH

*\(\Delta GHE\)cân tại G

Ta có : \(\widehat{GHE}=\widehat{GEH}\left(9\right)\)

           \(\widehat{GHE}+\widehat{NHE}=90^o\left(10\right)\)

           \(\widehat{GEH}+\widehat{NEH}=90^o\left(11\right)\)

Từ (9) (10) và (11) , suy ra : \(\widehat{NHE}=\widehat{NEH}\left(12\right)\)

\(\Rightarrow\Delta NEH\)cân tại N => NE = NH ( 13 )

Lại  có : \(\widehat{NEC}+\widehat{NEH}=90^o\left(14\right)\)

            \(\widehat{NHE}+\widehat{NCE}=90^o(\Delta CEH\)vuông tại E ) ( 15 )

Từ (12) (14) và (15) , suy ra : \(\widehat{NDC}=\widehat{NCE}\)

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.

c. Tam giác BDH vuông tại D có DM là đường trung tuyến nên :

\(DM=\frac{1}{2}BH=\frac{1}{2}.4=2\left(cm\right)\)

\(\Delta CEH\)vuông tại E có EN là đường trung tuyến nên :

\(EN=\frac{1}{2}CH=\frac{1}{2}.9=4,5\left(cm\right)\)

Mà \(MD\perp DE\)và \(NE\perp DE\)nên MD // NE

Suy ra tứ giác DENM là hình thang

Vậy : \(S_{DENM}=\frac{DM+NE}{2}.DE=\frac{2+4,5}{2}.6=19,5\left(cm^2\right)\)