K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

#Hình bạn tự vẽ nhé!!!#

a)Ta có: AM=DM(M là trung điểm của AD); BN=CN(N là trung điểm của BC)

\(\Rightarrow\)MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN//CD\left(1\right)\)

Ta lại có:AM=DM(cmt); AE=CE(E là trung điểm của AC)

\(\Rightarrow\)ME là đường trung bình của \(\Delta ACD\)

\(\Rightarrow ME//CD\left(2\right)\)

Từ(1) và (2), suy ra:\(MN\equiv ME\)(theo tiên đề Ơ-clit)

                           \(\Rightarrow M,N,E\) thẳng hàng (3)    

Vì BN=CN(cmt); BF=DF(F là trung điểm của BD)

\(\Rightarrow\)NF là đường trung bình của \(\Delta BCD\)

\(\Rightarrow NF//CD\left(4\right)\)

Từ(1) và (4), suy ra:\(MN\equiv NF\)(theo tiên đề Ơ-clit)

                           \(\Rightarrow M,N,F\)  thẳng hàng(5)

Từ (2) và (5), suy ra:M,N,P,Q thẳng hàng

 
4 tháng 7 2019

A B C D M N F E

a) +)Xét hình thang ABCD có: M là trug điểm AD, N là trung điểm BC

=> MN là đường trung bình hình thang ABCD

=> MN//AB//DC (1)

+) xét tam giác ADC có: M là trung điểm AD; E là trung điểm EC

=> ME là đường trung bình tam giác ADC

=> ME//=1/2 DC (2)

+) Xét tam giác ADB có M là trung điểm AD, F là trung điểm DB 

=> MF là đường trung bình của tam giác ADB

=> MF//=1/2 AB (3)

Từ (1), (2), (3) suy ra MN, ME, MF cùng nằm trên một đường thẳng

=> M, N, E, F thẳng hàng 

b) 

Ta có: \(EF=ME-MF=\frac{1}{2}DC-\frac{1}{2}AB=\frac{DC-AB}{2}\)

a: Xét ΔADB có

E là trung điểm của AD

G là trung điểm của BD

Do đó: EG là đường trung bình của ΔADB

Suy ra: EG//AB

hay EG//DC

Xét ΔADC có 

E là trung điểm của AD

F là trung điểm của AC

Do đó: EF là đường trung bình của ΔADC

Suy ra: EF//DC

mà EG//DC

và FE,EG có điểm chung là E

nên E,F,G thẳng hàng

a: Xét ΔEAB và ΔEMD có

góc EAB=góc EMD

góc AEB=góc MED

=>ΔEAB đồng dạng vơi ΔEMD

=>EM/EA=AB/MD=AB/MC

Xet ΔFAB và ΔFCM có

góc FAB=góc FCM

góc AFB=góc CFM

Do đó: ΔFAB đồng dạng với ΔFCM

=>FB/FM=AB/CM

=>FM/FB=CM/AB=DM/AB=ME/EA

=>EF//AB

b: Xet ΔBMC có FN//MC

nên FN/MC=BN/BC

=>FN/MD=AH/AD

Xét ΔADM có HE//DM

nên HE/DM=AH/AD

Xét ΔBDC có EN//DC

nên EN/DC=BN/BC=AH/AD

=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD

=>(EF+FN)/2=HE=FN

=>EF+FN=2FN

=>FN=EF=HE

30 tháng 8 2021

Hình bên dưới nha.

Giải thích các bước giải:

M;N lần lượt là trung điểm của AD,BCM;N lần lượt là trung điểm của AD,BC

⇒MN là đường trung bình của hình thang ABCD⇒MN là đường trung bình của hình thang ABCD

⇒MN=2+52=3,5;MN//AB//CD⇒MN=2+52=3,5;MN//AB//CD

MN//AB⇒ME//AB mà M là trung điểm ABMN//AB⇒ME//AB mà M là trung điểm AB

⇒ME là đường trung bình của ΔABD⇒ME là đường trung bình của ΔABD

⇒ME=AB2=1⇒ME=AB2=1

:Chứng minh tương tự:NF là đường trung bình của ΔACB:Chứng minh tương tự:NF là đường trung bình của ΔACB

⇒NF=AB2=1⇒NF=AB2=1

⇒EF=MN−ME−MF=3,5−1−1=1,5⇒EF=MN−ME−MF=3,5−1−1=1,5

Vậy EF=1,5Vậy EF=1,5

30 tháng 8 2021

vote

20 tháng 4 2020

có m là trđ của cd rồi lại còn ef cắt bc tại m

a, xét tam giác DEM có AB // DM (gt) => ME/AE = DM/AB (ddl)

xét tam giác MFC có  MC // AB (gt) => MF/FB = CM/AB (đl)

có DM = CM do M là trung điểm của CD (gt)

=> ME/AE = MF/FB  xét tam giác ABM 

=> EF // AB (đl)

b, gọi EF cắt AD;BC lần lượt tại P và Q

xét tam giác ABD có PE // AB => PE/AB = DE/DB (đl)

xét tam giác DEM có DM // AB => DE/DB = ME/MA (đl)

xét tam giác ABM có EF // AB => EF/AB = ME/MA (đl)

=> PE/AB = EF/AB

=> PE = EF

tương tự cm được FQ = EF

=> PE = EF = FQ

c, Xét tam giác DAB có PE // AB  => PE/AB = DP/DA (đl)

xét tam giác ADM có PE // DM => PE/DM = AP/AD (đl) 

=> PE/AB + PE/DM = DP/AD + AP/AD

=> PE(1/AB + 1/DM) = 1                                  (1)

xét tam giác AMB có EF // AB => EF/AB = MF/MB (đl)

xét tam giác BDM có EF // DM => EF/DM = BF/BM (đl)

=> EF/AB + EF/DM = MF/MB + BF/BM

=> EF(1/AB + 1/DM) = 1                            (2)

xét tam giác ABC có FQ // AB => FQ/AB = CQ/BC (đl)

xét tam giác BMC có FQ // MC => FQ/MC = BQ/BC (đl)

=> FQ/AB + FQ/MC = CQ/BC + BQ/BC 

có MC = DM (câu a)

=> FQ(1/AB + 1/DM) = 1                            (3)

(1)(2)(3) => (1/AB + 1/DM)(PE + EF + FQ) = 3

=> PQ(1/AB + 1/DM) = 3

DM = 1/2 CD = 6

đến đây thay vào là ok

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M,...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0