Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ đường cao $BK$
Tứ giác $ABKH$ có $AB\parallel HK, AH\perp BK$ (cùng vuông góc với $DC$) nên $ABKH$ là hình bình hành. Mà $\widehat{AHK}=90^0$ nên $ABKH$ là hình chữ nhật.
\(\Rightarrow HK=AB\); $AH=BK$
Xét 2 tam giác vuông $ADH$ và $BCK$ có:
\(AD=BC\) (tính chất hình thang cân)
\(AH=BK\)
\(\Rightarrow \triangle ADH=\triangle BCK(ch-cgv)\)
\(\Rightarrow DH=CK\)
Mà \(DH+CK=DC-HK=DC-AB\)
\(\Rightarrow DH=\frac{DC-AB}{2}\) (đpcm)
b)
Theo phần a \(CK=DH=\frac{DC-AB}{2}=\frac{13-5}{2}=4\) (cm)
\(DK=DH+HK=DH+AB=4+5=9\) (cm)
Xét tam giác $BDK$ và $CBK$ có:
\(\widehat{BKD}=\widehat{CKB}=90^0\)
\(\widehat{BDK}=\widehat{CBK}(=90^0-\widehat{DBK})\)
\(\Rightarrow \triangle BDK\sim \triangle CBK(g.g)\Rightarrow \frac{BK}{DK}=\frac{CK}{BK}\)
\(\Rightarrow BK^2=CK.DK=4.9=36\Rightarrow BK=6\) (cm)
Áp dụng đl Pitago cho tam giác vuông $BHK$: \(HB=\sqrt{HK^2+BK^2}=\sqrt{5^2+6^2}=\sqrt{61}\) (cm)
\(S_{ABCD}=\frac{(AB+CD).BK}{2}=\frac{(5+13).6}{2}=54(cm^2)\)